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ABSTRACT 

Influenza pandemics pose a serious threat to the global population. According to the 

United States Department of Health and Human Services in 2014, the Spanish flu of 1918 

killed almost 100 million people worldwide and Simonsen, Spreeuwenberg, and Lustig in 

2013 estimated that the Swine flu more recently killed approximately 180,000 people. 

Government agencies, from the United States Centers for Disease Control and Prevention 

down to state and local regions, are prepared to respond to potential influenza pandemics 

with antiviral, vaccine, and social interventions. Mathematical models can guide policies 

to saves lives. In this thesis, we create an optimization model, implemented in the online 

tool Texas Antiviral Release Scheduling (TAVRS) that provides the optimal geo-

temporal antiviral release schedule to advise decision makers at the Texas Department of 

State Health Services. We input the antiviral release schedule into an independent 

disease-spread simulation model to measure the effectiveness of the optimal release 

schedule. While the TAVRS optimal antiviral release schedule performs comparably to a 

simple population-proportionate release schedule during a simulated mild 2009-like 

influenza pandemic, the TAVRS release schedules saves an additional 10,000 lives—

three to four times greater—than the population-proportionate release schedule when 

responding to a severe 1918-like influenza pandemic. 
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EXECUTIVE SUMMARY 

Pandemic influenza poses a significant threat to the populations of the world. 

Through the past century, four global influenza pandemics and a severe influenza 

epidemic have shown that the world is not fully prepared to respond to pandemic 

influenza, especially a severe strain such as the 1918 Spanish flu. Over one-fifth of the 

world’s population is believed to have been infected with Spanish flu (Billings, 2005), 

and, 50 to 100 million people are thought to have died from Spanish flu or secondary 

complications incurred from the disease (U.S. Department of Health & Human Services, 

2014). As recently as 2009, Swine flu caused approximately 180,000 deaths worldwide 

(Simonsen, Spreeuwenberg, & Lustig, 2013).  

The World Health Organization (WHO) provides guidance to countries and 

international organizations and the Centers for Disease Control and Prevention (CDC) 

coordinates the national effort to respond to pandemic influenza (CDC, 2013). However, 

the burden of pandemic response falls on the state and local agencies to implement 

pandemic controls and interventions. Vaccinations are the most effective intervention, but 

they need time to develop and distribute. Until vaccines are available, the best response to 

pandemic influenza is a combination of social control measures, such as school closures 

and quarantine, and antivirals (Texas Department of State Health Services, 2008). Even 

in developed countries, antivirals are limited in number when compared to the 

requirements of a severe strain of influenza (Texas Department of State Health Services, 

2008). The Texas Department of State Health Services (DSHS) has outlined a response 

strategy that includes antivirals, however it needs improvement from updated disease 

spread and intervention models. The Texas Pandemic Flu Toolkit provides decision 

makers in the state of Texas with critical disease spread information and response advice. 

Included in the toolkit, the Texas Pandemic Flu Simulator is a powerful compartmental 

disease spread model with time, location and demographic dimensions.  

In our thesis, we develop an optimization program that is implemented in an 

online tool called Texas antiviral release scheduling (TAVRS), included in the Texas 

Pandemic Flu Toolkit, to provide the optimal allocation of antivirals to decision makers. 
 xv 



The optimization program includes time, location, and age-demographic dimensions. The 

optimization program targets the average treatable population during an influenza 

pandemic. The treatable population is the number of individuals at a certain location and 

time that have been symptomatic with influenza for less than 24 hours. Stochastic 

variations of historical influenza strains and geographic origins in Texas from the Texas 

Pandemic Flu Simulator are averaged to create this input into the optimization program. 

We formulate a mixed integer linear program to determine geo-temporal antiviral release 

schedule to maximize the benefit of available antivirals. We consider three benefits of 

antivirals: lives saved, hospitalizations avoided, or quality adjusted life years (QALY) 

saved. 

We first consider a base case scenario, which consists of a 1918-like random-

origin influenza pandemic with unlimited antivirals. The release schedule maximized the 

lives saved to roughly 26,500 by releasing a large amount immediately before the rise in 

treatable people. Although 30 million antivirals are available, TAVRS releases only 14 

million. Antivirals are released to the highest populated counties during the weeks that 

precede the fast rise in treatable population. Antivirals released earlier may be consumed 

by the worried-well and antivirals released later are not available for the rise in treatable 

people. 

 Next, we examine several variants from the base model. When the pandemic 

originates near the border, the optimal schedule releases antivirals to the counties 

immediately prior to when the disease significantly spreads to them. When the pandemic 

originates in a highly populated county, the pandemic can spread quickly. A less virulent 

pandemic strain generates an extended release schedule duration and fewer antivirals 

released. A smaller supply of antivirals results in a delay in the release of the bulk of the 

antivirals. Finally, the specific objective function (lives saves, hospitalization, QALYs) 

had no apparent impact of the release schedule of antivirals. 

Our analysis concludes with a comparison of the lives saved between the TAVRS 

antiviral release schedules and a simpler population-proportionate population 

distribution. The comparison found that in response to a mild pandemic, like the 2009 

swine flu, the population-proportionate antiviral release schedule worked comparably the 
 xvi 



TAVRS antiviral release schedule. However, in response to a severe strain of influenza, 

like the 1918 Spanish flu, the TAVRS antiviral release schedule performed drastically 

better saving roughly 10,000 more lives, three to four times greater, than the population-

proportionate release schedule.  
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I. INTRODUCTION 

A. OVERVIEW 

Infectious disease pandemics, in particular the highly contagious and 

unpredictable strains of influenza, pose a large and immediate threat to the peoples of the 

world. Influenza is a common and easily transmitted disease. Every year flu vaccines are 

provided by governmental organizations in the expectation of endemic influenza, an 

often-milder form of influenza occurring periodically throughout the winter in denser 

populations. Yet the possibility of an epidemic outbreak, in which the disease infects a 

more widespread population at a given time, constantly looms. An epidemic can expand 

to pandemic scale if the disease affects a large proportion of the worldwide population, 

which has the potential for massive numbers of deaths and catastrophic economic 

impacts. The capability of a pandemic strain of influenza to quickly grow and infect large 

populations makes it a considerable threat. 

Government organizations prepare each year not only for the regularly occurring 

endemic influenza, but also for the possibility of a larger epidemic or pandemic strain. 

Counties and states develop vaccines for the most probable strains and prepare response 

plans for antivirals, vaccines, and social interventions. Many of them have turned to 

mathematical models to better predict and respond to pandemic influenza. Current 

advances in computing power and modeling algorithms have enabled states and countries 

to prepare better than ever for a worldwide pandemic. Coupled with the proper policy and 

resources, these models have the potential to minimize the cost of response and, most 

importantly, the loss of life in the case of an outbreak of pandemic influenza. This thesis 

seeks to develop a mathematical model to release antivirals most effectively in response 

to pandemic influenza in Texas.  
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B. MODERN ERA PANDEMICS 

The influenza virus has afflicted human populations from the beginning of our 

existence. Modern times have seen no decrease in pandemics. Since 1918, there have 

been four global influenza pandemics, each with unique characteristics in epidemiology 

and disease severity (U.S. Department of Health & Human Services, 2014). Even with 

advances in medicine during the 20th century, the world was unable to prevent the severe 

loss of life. Today, the possibility of a pandemic strain of influenza sweeping through the 

highly connected populations of the world is a real fear for countries and states.  

1. Spanish Flu (1918–1919) 

The disease known as Spanish flu appeared shortly after World War I and quickly 

escalated into a worldwide pandemic. After one of the most brutal and gruesome wars to 

date, the Spanish flu emerged to infect almost one-fifth of the world’s population 

(Billings, 2005). The strain of influenza called Spanish flu is considered Influenza A 

(H1N1). It was known for its extremely high case fatality rate (CFR), which was upwards 

of 2.5 percent in certain segments of the population (Billings, 2005).  

From 1918 to 1919, the disease traversed the globe in three separate waves, each 

affecting a region of the world for up to 12 weeks and then dissipating (Taubenberger & 

Morens, 2006). The graph in Figure 1 shows the mortality of the three distinct waves as 

they swept through Great Britain. The first wave arrived in March of 1918 and swept 

through Europe, the United States, and Asia throughout the following six months 

(Taubenberger & Morens, 2006). The illness rates were high, but deaths due to the flu 

were not. The second wave that was the most deadly, peaking at almost 25 deaths per 

1000 people from September to November of 1918 (Taubenberger & Morens, 2006). 

Finally, the third wave occurred early in 1919.  
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Figure 1.  Spanish flu mortality 1918–1919 (from Taubenberger & Morens, 

2006). 

The symptoms of Spanish flu were exceptionally aggressive. The onset of the 

symptoms was quick; uninfected people could catch the disease and die before the end of 

a single day. For many, the disease did not ultimately kill them, but left their bodies 

susceptible to complications caused by bacteria. The postmortem examinations showed, 

in many victims, the ultimate cause of death was secondary bacterial infections (such as 

bacterial pneumonia) in the lungs (Collins, 1931). Spanish flu is thought to have affected 

up to 40 percent of the world’s population. It had a staggering average case fatality rate 

(CFR) of 1.7 percent deaths per infected individuals (Collins, 1931). It is estimated that 

50 to 100 million people worldwide died from the disease or secondary complications 

incurred because of the disease, which is more than the number of people who died in 

World War I. In the United States, nearly 675,000 people died (U.S. Department of 

Health & Human Services, 2014).  

In endemic and epidemic influenza, the CFR is typically greater for the older and 

younger aged populations, due to incompletely developed or atrophied immune systems. 

This creates a “U” shape in mortality over the age spectrum that can be seen in Figure 2 

(see the “December 1921–September 1922” line, which represents the years after the 

Spanish Flu pandemic). Strangely, the mortality curve for Spanish flu took an unnatural 

“W” shape. While the older and younger populations remained greatly affected, a 

relatively high proportion of the 20–40-year-old population also died (Morens & Fauci, 

2009). The disease affected an unusually healthy proportion of the population. Experts’ 

opinions differ on why this odd trend actually occurred. Some believe it was due to a 
 3 



particular immunoprotection gained from the older population, greater than 35, surviving 

a similar strain (Taubenberger & Morens, 2006). Others believe the unusually high 

mortality rate among healthy adults was due to an immunological response in these 

individuals, resulting in enhanced tissue damage (Morens & Fauci, 2009). 

 
Figure 2.  Spanish flu mortality through age spectrum. An unusually high 

mortality rate existed for healthy adults between 15 and 50 years of age 
(from Morens & Fauci, 2009). 

2. 1928 U.S. Influenza Epidemic 

The 1928 epidemic swept through the population of the United States within a 

decade of the Spanish influenza. It was significantly less severe than Spanish flu due to 

the limited region of the world it affected; however its case fatality rate was still fairly 

high. The average case fatality rate was 0.56 percent, roughly one third that of the 

Spanish Flu CFR (Collins, 1931). The reduced incidence of the epidemic in the United 

States led to only approximately 100,000 deaths (Bureau of the Census, 1930).  
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3. Asian Flu (1957–1958) 

A new flu virus was identified in February 1957 in the Far East that became 

known as Asian flu. The United States responded by starting work on a vaccine that 

would become available in limited supply by August 1957 (Kilbourne, 2006). The 

disease quietly worked its way into the United States with a series of small outbreaks but 

spread quickly after children returned to school in the summer of 1957. The infection 

rates were greatest among school children, young adults and pregnant women (U.S. 

Department of Health & Human Services, 2014). While the pandemic seemed to be over 

by December 1957, a second wave of infections continued until March 1958 (U.S. 

Department of Health & Human Services, 2014). 

At the biological level, Asian flu was classified as a H2N2 virus, which was much 

different than the devastating Spanish flu. Studies have shown that Asian flu evolved 

from a genetic re-assortment of avian flu, which was different than any influenza virus 

that had been studied before (Greene & Moline, 2006). This process is referred to as an 

antigenic shift. The disease is thought to have been a wild duck strain that combined with 

a previously existing human strain (Greene & Moline, 2006). The world was better 

prepared for the Avian Flu than it was for the Spanish flu due to advances in medical 

technology and data collection. Developed countries mobilized to create a vaccine and 

treat cases to avoid the staggering loss of life that occurred during the Spanish flu. 

The Asian flu was overall much milder compared to the Spanish Flu, with a case 

fatality rate of 0.01 percent for cases under age 49. However, for ages 50–65 and above 

65, the CFR climbed to 1.0 and 4.0 percent respectively (Payne & McDonald, 1958). It is 

estimated that 1–2 million people died from the pandemic worldwide (Rogers, 2013). In 

the United States, approximately 70,000 people died from Asian flu or complications 

incurred from Asian flu, with infants and the elderly being the most susceptible to the 

virus (Rogers, 2013). The effect on the elderly can be seen in Figure 3 by the steady 

increase in excess mortality rate and premature deaths (death occurring prior to a 

person’s normal life expectancy), starting at age 45 and rapidly increasing at 70 (Dowdle, 

1999). The data for infants was not available for this graph. 
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Figure 3.  Excess mortality by age for Asian flu (1957) and Hong Kong flu 

(1969) influenza pandemics (from Dowdle, 1999). 

4. Hong Kong Flu (1968–1969) 

The influenza strain that caused a worldwide pandemic in 1968 took the name of 

the place where it was first detected: Hong Kong. The virus made its way to the United 

States by September 1968 and peaked during the winter. Although the virus returned in 

1970 and 1972, it had the lowest death total of all the large pandemics to hit the world in 

the 20th century (U.S. Department of Health & Human Services, 2014).  

The strain was identified as the H3N2, which descended from the Asian flu 

(H2N2) through an antigenic shift. The estimated average CFR worldwide was less than 

0.01 percent for the majority of age groups, climbing to approximately 1.0 percent for 

cases in people older than 50 (Dowdle, 1999). The strain, mild compared to Spanish flu, 

is thought to have ultimately led to the death of close to 1 million people (Paul, 2013). It 

affected people throughout the age spectrum, although the elderly were once again at 

greater risk. Returning to the graph in Figure 3, it can be seen that people over the age of 

65 were most likely to die from the Hong Kong Flu, although the excess mortality 

increased much less than with the Asian flu (Dowdle, 1999). 
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5. Swine Flu (2009–2010) 

The most recent flu pandemic occurred in 2009. Swine flu, as it became known, 

was first detected in April 2009. By June, over 18,000 cases had been reported in the 

United States; by November, a total of 48 states were affected by the pandemic, with the 

disease most prominent in young people (U.S. Department of Health & Human Services, 

2014). The graph in Figure 4 shows the pediatric deaths attributed to the seasonal flu (in 

green), compared to deaths due to the swine flu pandemic (in pink). The pandemic caused 

almost three times more pediatric deaths in the United States than the seasonal flu (The 

Influenza Division of Centers for Disease Control and Prevention, 2010).  

 
Figure 4.  Number of Swine flu associated pediatric deaths by week of 

death (from The Influenza Division of Centers for Disease Control and 
Prevention, 2010). 

Swine flu had an even greater impact worldwide. The map in Figure 5 shows the 

locations of deaths from laboratory-confirmed cases of H1N1 throughout the globe. The 

World Health Organization (WHO) estimates over 18,000 people died from the swine flu 

(WHO, 2010), although further research has shown that the deaths from the 2009 swine 

flu pandemic, including secondary complications, may have been over 10 times that 

number (Simonsen, Spreeuwenberg, & Lustig, 2013). This recent study accounted for the 
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respiratory deaths precipitating from the flu virus, occurring with higher incidence in 

older individuals (Simonsen, Spreeuwenberg, & Lustig, 2013). The CFR for the 2009 

swine flu was calculated to be 0.007 percent, which is much lower than Hong Kong and 

Asian flu (Presanis & De Angelis, 2009). Even though the swine flu was relatively mild, 

it had a significant impact; it swept through the populations of the world despite the best 

efforts of response agencies with the latest technology. 

 
Figure 5.  Locations of cases of swine flu by 15, August 2010 (from World 

Health Organization, 2010). 

C. CURRENT PANDEMIC RESPONSE PLAN 

The scope of pandemic response plans ranges from large international and 

national organizations down to the state and local level. The focus of this thesis is on the 

Texas influenza pandemic response plan; however, it is important to understand the 

structure of the organizations above the state level. An effective and efficient response to 

a worldwide pandemic requires planning and cooperation among large international and 

national institutions, such as WHO, the United States Department of Health and Human 
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Services (HHS), and the Center for Disease Control and Prevention (CDC), and state and 

local agencies. 

1. International and National Response Plans 

WHO sets the International Health Regulations (IHR) and oversees the 

coordinated effort of many member nations to respond to a multi-national pandemic. 

HHS is the U.S. government’s principle agency for protecting the health of all 

Americans. A principle component of this agency is the CDC. The CDC is required to 

protect the public health through, but not limited to, “developing and applying disease 

prevention and control, environmental health, and health promotion and health education 

activities” (CDC, 2013, para. 1).  

In addition to setting IHRs, WHO periodically updates pandemic preparedness 

guidance to member states in the form of interim guidance. In 2013, WHO released 

Pandemic Influence Risk Management. This report highlighted common issues member 

countries experienced in response to the 2009 Swine flu pandemic. Countries had 

prepared for a pandemic of high severity but were unable to adapt their national and local 

plans to a more moderate event (WHO, 2013). Also, the need to communicate clear and 

concise risk assessments to decision makers emerged as a significant problem (WHO, 

2013).  

The 2013 interim update created emergency risk management for health (ERMH), 

which provides member states guidance and technical support in risk management in the 

following six areas: policies and resource management, planning and coordination, 

information and knowledge management, health infrastructure and logistics, health and 

related services, and community ERMH capacities (WHO, 2013). For logistics and 

infrastructure, WHO manages a strategic global stockpile of antivirals and vaccines, yet, 

only develops standard operating procedures to rapidly deploy their global stockpile of 

vaccines (WHO, 2013). In all areas, WHO offers information and guidance instead of 

regulation. WHO instructs member states to create and update their own pandemic 

response plans based on local information and circumstances (WHO, 2013). 
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In the United States, the White House created Homeland Security Presidential 

Directive 21 in 2007. It directs the department of Homeland Security, charged with 

ensuring resilience to disasters in the United States, to coordinate with the department of 

Health and Human Services (HHS) to create a system to enable communities to quickly 

provide pandemic countermeasures (vaccines, drugs, and therapeutics) to their 

populations (White House, 2007). This instruction would take a few years before the 

CDC, which falls under the HHS, revised their standing response plans to adhere to the 

presidential directive. 

Following the Swine flu pandemic, the CDC updated its national pandemic 

response plan, “Preparedness and Response Framework for Influenza Pandemics.” The 

plan restructures the description of pandemic planning progression to include six 

intervals across eight domains of preparation. The six intervals are further divided into 

pre-pandemic intervals and pandemic intervals (Holloway, Rasmussen, Zaza, Cox, & 

Jernigan, 2014). The pre-pandemic intervals are made up of investigation and 

recognition. After the onset of an influenza pandemic, the pandemic intervals include 

initiation, acceleration, deceleration, and preparation (Holloway et al., 2014). Figure 6 

shows the progression of pandemic influenza through the CDC intervals. 
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Figure 6.  CDC pandemic intervals with hypothetical number of influenza cases, (from Holloway et al., 2014). 
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The eight domains of preparation delineated by the CDC’s plan are incident 

management, surveillance and epidemiology, laboratory, community mitigation, medial 

care and countermeasures, vaccine, risk communication, and state/local coordination 

(Holloway et al., 2014). Of particular note to our discussion are medical care and 

countermeasures. For each interval the CDC makes recommendations to state and local 

agencies such as “consider implementation of voluntary quarantine of contacts and 

chemoprophylaxis of exposed persons based on current recommendations” (Holloway et 

al., 2014, p. 16) and “monitor antiviral use to identify possible shortages” (Holloway et 

al., 2014, p. 16). While the CDC recommends benchmarks for each domain across each 

interval, the foundation of a concrete plan for antivirals is never set. The burden for plans 

of action, like antiviral distribution plans, is directed to state and local governments. 

2. Texas State Response Plan 

At the state level, a cohesive pandemic response plan starts to form. The agency 

tasked with the protection of public health in the state of Texas is the Department of State 

Health Services (DSHS). They have created a document outlining the Texas pandemic 

response plan called the Pandemic Influenza Plan Operational Guidelines (PIPOG). The 

PIPOG adapts guidance from the WHO and CDC to develop a comprehensive strategy to 

prepare and respond to pandemic influenza in Texas. It outlines three goals: 1) “stopping, 

slowing, or otherwise limiting the spread of a pandemic into the state,” 2) “limiting the 

spread of a pandemic and mitigating disease, suffering, and death,” and 3) “sustaining 

infrastructure and mitigating impact on the economy and the functions of society.” 

(Texas Department of State Health Services, 2008, p. 7) These guidelines “outline 

activities and responsibilities for the state, regional, and local public health departments” 

(Texas Department of State Health Services, 2008, p. 7). 

Among the different intervention strategies to accomplish these goals, vaccines 

are the most effective response, but they require time to develop and then more to 

produce (Texas Department of State Health Services, 2008). Until the vaccines are a 

viable option, antivirals coupled with community based mitigation strategies are the 

primary means of slowing the spread of the pandemic (Texas Department of State Health 
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Services, 2008). In particular, antivirals will reduce the duration of symptoms of the virus 

and may prevent certain complications. Antivirals have the added ability to be stockpiled 

in case of a pandemic so that they can be readily available. Although Texas is in a 

developed country, antivirals are still considered “limited” in supply if a Spanish-flu-like 

pandemic were to occur making it paramount to efficiently manage their distribution 

(Texas Department of State Health Services, 2008). This thesis analyzes the distribution 

plan for antivirals during an influenza pandemic in Texas. It is important to note, 

“Antiviral drug countermeasures are one tool of a multi-faceted containment response” 

(Texas Department of State Health Services, 2008, p. 5). 

Planning for the use of antivirals must include “identifying target groups to 

receive antiviral drugs, allocating and delivering the antiviral drugs, communicating 

critical information, and monitoring the effects of the drugs in the population” (Texas 

Department of State Health Services, 2008, p. 5). In 2008, two separate panels of experts 

at the Texas DSHS created the basis for Texas antiviral allocation. While not 

mathematically founded, it recommended an adaptive 3-tier priority system to distribute 

antivirals to target groups: 1) outbreak control, 2) infrastructure, and 3) Risk for 

complications (Texas Department of State Health Services, 2008). Outbreak control is the 

primary goal at the onset of pandemic in Texas. Once this goal is accounted for, 

allocation can proceed to target tiers 2 and 3 (Texas Department of State Health Services, 

2008). As a local control state, Texas has created a response plan that is simple and 

flexible enough to allow decisions to be made on the local level of governance. 

The science of developing effective antivirals has progressed quickly in recent 

times. Currently, the United States has three licensed antiviral agents: peramivir 

(Rapivab), zanamivir (Relenza), and oseltamivir (Tamiflu). This paper will focus on 

primarily two of these, zanamivir (Relenza) and oseltamivir (Tamiflu), which are from a 

class known as neuraminidase inhibitors (NI) that prevents a virus from reproducing 

(CDC, 2015). NIs have been proven to have a significant reduction in the duration and 

severity of flu symptoms if an infected person receives the antivirals within the first 48 

hours after becoming symptomatic (CDC, 2015).  
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The origin of Texas’s antiviral drug stockpile comes from three distinct supplies: 

DHSH cache, Texas General Revenue (GR) cache, and the Texas allotment from the 

Strategic National Stockpile (SNS) (Texas Department of State Health Services, 2008). 

The first two stockpiles are maintained by the state of Texas but the SNS is only released 

by the CDC to the state of Texas when WHO declares a worldwide influenza pandemic. 

While the current number of SNS antivirals is classified, the number of antivirals 

allocated as of 2007 was approximately 4 million, with the possibility to buy more at a 

subsidized price (Texas Department of State Health Services, 2008). The DSHS cache, a 

small cache of slightly over 100,000, will be the first used if it is determined that a 

pandemic is imminent. It will initially be divided evenly between eight DSHS Health 

Service Regions (HSR) and the DSHS Austin office for preemptive distribution to first 

responders (Texas Department of State Health Services, 2008).  

After the pandemic is declared, the antiviral drugs from the DSHS GR cache and 

SNS, the bulk of the antivirals available, will be distributed based on targeting certain 

population groups in order to minimize morbidity and mortality, minimize economic 

effects, and minimize social disruption (Texas Department of State Health Services, 

2008). Figure 7 represents the current Texas antiviral allocation guidance. This plan relies 

on vigilant surveillance and analysis of influenza-like illness (ILI) patterns in the 

population. Distribution decisions will be made using the “latest science,” which includes 

the array of large-scale mathematical models contracted through local universities and 

private groups, and “input from participants in two Expert Panels convened by DSHS” 

(Texas Department of State Health Services, 2008).  
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Figure 7.  Texas DSHS antiviral release guidance (from Texas Department 

of State Health Services, 2008). 

D. MOTIVATION AND OUTLINE 

The Texas DSHS antiviral distribution in response to pandemic influenza is 

adaptable and flexible, however it does not provide a concrete release plan. They instruct 

panels of experts to make allocation decisions using current mathematical models, but 

these models are not specified. This thesis is part of a project team that has been tasked to 

create a revised mathematical model. The optimization model from this thesis has been 

implemented in an online tool to aid decision makers distribute antivirals in the state of 

Texas. 

Texas carries unique characteristics that challenge the prevention and response to 

a statewide pandemic. Texas’s population characteristics such as size, population 

densities, and the availability of health care services, as well as geography create a 

considerable problem for responding to an influenza pandemic. Texas is larger, 

geographically, than the 14 smallest states in the United States combined (Texas 

Department of State Health Services, 2008). Out of the 254 counties in Texas, 116 (46%) 

are considered primary care health professional shortage areas, 64 (25%) have no 

hospital, 178 (70%) qualify as fully medically underserved areas, and 46 (18%) as 

partially medically underserved areas (Texas Department of State Health Services, 2008). 

In addition, Texas shares 1,250 miles of border with Mexico and has two international 
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airports that rank in the top ten for passenger counts in the country (Texas Department of 

State Health Services, 2008). There are six seaports including two that serve the cruise 

ship industry. In the state of Texas it is estimated that without intervention a pandemic 

similar to the 1918 Spanish Flu could infect 7 million Texans and result in 1.4 million 

deaths (Texas Department of State Health Services, 2008).  

The unique challenges of preparing and responding to a statewide pandemic 

require the use of precision tools that use the most cutting-edge understanding of the 

problem. The goal of this paper will be to improve the current mathematical model used 

to guide the release of antivirals in the state of Texas. Chapter II includes an in depth 

literature review of disease spread models and intervention optimization. Chapter III 

defines the specific objectives of this paper’s model. Also, it explains the model itself to 

include sets, data, formulation, variables, objective function, constraints, and 

assumptions. Chapter IV reports the analysis of several scenarios as well as a comparison 

to the analysis of a similar model, the Texas pandemic flu simulator. Finally, Chapter V 

will draw the conclusions from this model and recommend follow-on research.  
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II. LITERATURE REVIEW 

Developing mathematical models to predict and respond to infectious disease 

epidemics is a rapidly emerging field of study. Modern computer-aided analytical 

techniques have opened up a previously underdeveloped area in the study of 

epidemiology. Analytical methods are developed to model the spread of a disease 

through a population as well as optimizing intervention strategies. It is important to 

effectively manage and coordinate advances in pandemic response, such as vaccines, 

antivirals, and social interventions, to significantly reduce the spread and severity of an 

infectious disease. 

As covered in the previous chapter, Texas DSHS policy directs the “panel of 

experts” to determine the best antiviral distribution throughout the state of Texas utilizing 

the “latest science.” Under this policy, the Texas DSHS has sponsored several 

mathematical models to aid in the antiviral allocation, distribution, and storage. Located 

on the “Texas Pandemic Flu Toolkit” website (at http://flu.tacc.utexas.edu), the models 

can be accessed and used by the decision makers. The toolkit incorporates a powerful 

age-risk structure disease spread simulation model called the “Texas Pandemic Flu 

Simulator.” Accompanying the disease-spread model are three intervention optimization 

models, two of which we will not focus on in this paper: the Texas Vaccine Allocation 

model and the Texas Ventilator Stockpiling model. The Texas Antiviral Distribution 

model, the interventional model of focus, optimizes the distribution of antivirals in the 

state of Texas using a facility-location optimization model. It is this intervention 

optimization model that this paper will seek to replace with an improved model using 

data from the Texas Pandemic Flu Simulator. 

A. DISEASE SPREAD MODELS 

Differential equations (DE) are one of the oldest and most consistently used 

disease-spread models. In 1927, Kermack and McKendrick first developed a 

deterministic differential equation epidemiological model with the susceptible population 

density exceeding the critical value resulting in an epidemic. Decades later Rvachev 
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(1968) created the first spatial and temporal model using DEs to represent the spread of 

influenza through the USSR. Hethcote conducted a comprehensive review of the 

progression of disease-spread models in 2000. In it he describes that, since the middle of 

the 20th century, DE models have improved significantly and are now use in tandem with 

modern computing techniques to more accurately model the spread of a disease 

(Hethcote, 2000).  

In DE models, often referred to as compartmental models, a population is divided 

into several homogeneous subgroups, or compartments, that are mutually exclusive (at 

one given time if a temporal dimension exists). Each member of a compartment is 

assumed to have the exact same epidemiological state. The simplest compartmental 

differential equation model is the SIR model. Susceptible (S), Infected (I), and Recovered 

(R) population groups are represented by three mutually exclusive compartments. The 

rate of change of these groups can be seen in the equations from Hethcote in Figure 8. 

Given a population of size N, the susceptible compartment can become infected with a 

rate proportional to the contact rate, Beta, and the size of the susceptible and infected 

populations. The Infected group recovers with the rate gamma and transitions the 

recovered group (from Hethcote, 2000). 

 
Figure 8.  Susceptible, Infected, and Recovered (SIR) compartmental 

model equations (from Hethcote, 2000). 

A DE compartmental model can range from very simple to extremely 

complicated. The number of compartments determines the granularity. Granularity is the 

extent to which a model is broken down into parts. A course-grain model is not 

extensively broken down, resulting in an undetailed but simple model. A fine-grained 

model is broken down extensively providing a significantly complicated model. Also, a 
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deterministic model can evolve into a stochastic model by adding probabilistic 

parameters to the differential equations, therefore complicating the model even more. 

A more complicated compartmental model than SIR is the MSEIR model. M and 

E are compartments inserted for births with temporary passive immunity and exposed, 

but not yet infectious, respectively. As the acronym hints at, individuals in the temporary 

passive immunity group (M) can move to Susceptible, which can move to Exposed, 

which can move to Infected, which can then move to Recovered. Deaths can occur in any 

of the compartments. The flow chart from Figure 9 illustrates the dynamics of the MSEIR 

model (Hethcote, 2000). 

 
Figure 9.  General transfer diagram for passive immunity MSEIR model 

with, susceptible, exposed, infected, and recovered classes (from 
Hethcote, 2000). 

The use of mitigation strategies can increase the number of compartments and 

therefore the granularity of the model. Colburn, Wagner, and Blower (2009) divide the 

mitigation strategies into two distinct types: behavioral public health interventions and 

biomedical. Quarantine and isolation measures are examples of behavioral interventions. 

The left-side flow chart from Figure 10 adapts a compartment model to account for 

quarantine. Susceptible, Exposed, and Infected groups have their individual quarantined 

states represented by QS, QE, and QI respectively (Coburn et al., 2009). Only the QS may 

return to its original group once it determines to not have been infected. The use of 

biomedical intervention methods is shown on the right-side flow chart in Figure 10. 

Vaccinated individuals move to V, in which they are immune to the disease (Coburn et 

al., 2009). Once an individual is infected, he or she moves to the group T if they have 

been treated with antivirals. 
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Figure 10.  General transfer diagrams for SEIR model with quarantine 

compartments (QS, QE, QI) and SIR model with vaccination and 
antivirals (V and T respectively) (from Coburn et al., 2009). 

The SIR model can be extended to a geographically large regional model with 

heterogeneous population density to show both spatial and temporal movement of an 

influenza epidemic. In a recent model, Cahill, Crandall, Rude, and Sullivan (2005) create 

a space-time model combining mass action, in which a large number of people 

simultaneously behave in a similar manner, with lattice and stochastic principles. They 

divide the United States into 106 land patches, cells, of 10 km2, in which an independent 

compartmental SIR model occurs in each (Cahill et al., 2005). They allow interactions to 

occur between neighboring cells in the geographic lattice. For example, a susceptible 

compartment has a location and time component, denoted as S(x,y,t). Stochastic 

interactions are included in some of the parameters such as contact rate. Finally, 

demographic age classes are included with population groups of infant (0.5–5 years), 

child (5–18 years), middle (18–65), and old (65–infinity) to create even greater 

granularity of the heterogeneous population (Cahill et al., 2005). This model provides 

much detail about the propagation of a disease through the United States. 

Finally, the Texas Pandemic Flu Simulator model, created by Medlock, Meyers 

and Galvani, (2009) improves the temporal-spatial model further. The Texas Department 

of State Health Services (DSHS) has adopted this model to use in epidemic decision-
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making. It uses a modified SEIR model incorporating two separate SEIR categories, one 

for an unvaccinated and one for a vaccinated group. A flow chart depicting the model is 

shown in Figure 11. The heterogeneous model also has 17 age bins (0, 1–4, 5–9, 10–

14…70–74, 74+), which are then further divided into low-risk and high-risk (Medlock et 

al., 2009). High-risk people are defined as those with an existing condition such as 

asthma or pregnancy (Medlock et al., 2009).  

 
Figure 11.  Texas Pandemic Flu Simulator transfer model for unvaccinated 

(US, UE, UI, UR) and the vaccinated (VS, VE, VI, VR) SEIR 
compartments, (from Medlock et al., 2009). 

The Medlock et al. (2009) model also connects many compartmental models 

through a network structure in which each node is a county in Texas connected to other 

nodes through stochastic movement. At each of the nodes a separate compartmental 

model simulates the progression of pandemic influenza with a modified SEIR. The SEIR 

compartments are divided into unvaccinated (US, UE, UI, UR) and the vaccinated (VS, VE, 

VI, VR) (Medlock et al., 2009). The movement in the model assumes that infected 

individuals will travel for work only during the latent period, which is prior to the onset 

of symptoms, and only travel to seek health care after the onset of symptoms.  

 The model includes three forms of intervention: vaccination, social distancing, 

and antivirals (Medlock et al., 2009). The social distancing is disseminated through 

public announcements encouraging hygienic precautions, health care seeking guidelines, 
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and social distancing recommendations. The mode calculates valuable epidemic 

quantities like total state treatable cases, hospitalizations, deaths by age/risk group, and 

timing and magnitude of epidemic peak. The data was used to analyze several release 

schedules of vaccines (Medlock et al., 2009). We will be incorporating the results from 

this disease-spread model to target a specific population group with an antiviral release 

schedule. 

B. INTERVENTION OPTIMIZATION MODELS 

While predictive models of infectious disease propagation have evolved greatly, 

true optimization of intervention strategies is far more limited. This is due in part to the 

complexity of the predictive models; Intervention strategies such as antivirals, 

vaccinations and social distancing can be incorporated into the disease spread models, but 

the optimization of these strategies to a specific demographic, location, or time is 

extremely complicated.  

Most examinations of intervention strategies have utilized adjustments to the 

compartmental models discussed in the previous section. Khazeni, Hutton, Garber, 

Hupert, & Owens (2009) use the compartmental epidemic model combined with a 

Markov model of human disease transmission of the first wave of 2009 Influenza A 

(H1N1) to examine the effects of nonpharmaceutical interventions, including closing 

school and child care facilities, home isolation, cough etiquette, hand washing, use of 

personal protective equipment, and vaccinations. They used measures of effectiveness 

(MOE) that include infections and deaths, quality-adjusted life-years (QALYs), and 

incremental cost effectiveness ratios (Khazeni et al., 2009). QALYs accounts for the 

expected remaining lifespan of the deceased individual to weigh lives with more 

remaining lifetime greater. The study found that earlier vaccination against pandemic 

H1N1 2009 prevents more deaths, increases QALYs, and is more cost saving that other 

vaccination schedules (Khazeni et al., 2009).  

Our model uses results from a compartmental disease spread model that uses 

similar stochastic human transmission on a larger scale, on the state level instead of a 

generic U.S. city. Also, we optimize the release schedule of an antiviral intervention with 
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a linear program instead of examining the effects of interventions with sensitivity 

analysis on different scenarios. Although our model investigates the use of 

nonpharmaceutical intervention strategies and vaccines, it uses very similar measures of 

effectiveness to the measures of effectiveness use: mortality rates and QALYs to 

determine. 

With limited vaccine and antivirals capabilities around the world, the 

development of a precision release schedule for medical countermeasures become 

paramount. Matrajt and Longini (2010) created a compartmental epidemic model to 

investigate vaccine intervention. Their model examines sensitivity analysis by varying 

the timing and composition of vaccine release schedules on developed counties (DC) and 

less developed countries (LDC) populations with moderately severe strains of H1N1 

influenza. The results show that an earlier release schedule of vaccines, before the peak 

vice after, drastically reduces the number of influenza infections, therefore reducing the 

total number of influenza deaths and hospitalizations (Matrajt & Longini, 2010). 

Demographically, the targeting of high and low risk children starting on day 20 of an 

epidemic greatly reduces the prevalence compared to targeting high-risk children and 

adults on day 20 (Matrajt & Longini, 2010). 

The model used by Matrajt and Longini uses a similar compartmental epidemic 

model to the one used by the Texas Pandemic Flu Simulator. Once again this model only 

conducts sensitivity analysis on a simulated progression of H1N1 Influenza through a 

human population; however the results highlight the importance of an early release 

schedule using death rates and hospitalizations, which are similar to the MOEs that we 

use in our model. Also, the results of the model emphasize the importance of targeting 

certain demographic groups with regards to age and risk. Our model seeks to use antiviral 

optimization to target demographic groups to reduce similar MOEs in the state of Texas. 

The release of vaccines depends on the timing of their development after the 

emergence of a pandemic influenza strain. Until that happens, the best intervention 

strategies, antivirals and social distancing measures, must be implemented to provide the 

greatest benefit the population. Logini, Halloran, Nizan, and Yang (2004) used a 

compartmental stochastic epidemic simulation to evaluate the effectiveness of targeted 
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antiviral’s administered prophylactically, treating the actual disease and not just 

symptoms, to respond to an avian strain of influenza. The model used discrete-time 

progression of the pandemic through a community of 2,000 people with a typical 

demographic cross-section (Longini et al., 2004). The antiviral allocation targeted 

identified influenza cases and their immediate contact mixing groups such as households, 

day-care centers, playgrounds, and schools. They found that the epidemic would be 

contained if 80% of these exposed persons maintained prophylaxis for up to 8 weeks 

(Longini, et al., 2004). The model predicts a reduction in the illness attack rate, which is 

the speed of progression of the disease in numbers of new cases per population, of 2% 

(Longini et al., 2004). Also, the model predicted a reduction in death rate of 0.04 deaths 

per 1,000 persons. This improvement is comparable to vaccinating 80% of the population 

(Longini Jr., Halloran, Nizam, & Yang, 2004). 

The scale of Logini et al.’s (2004) model focused on a single “typical” American 

community of individuals afflicted with an Asian-influenza strain. Our model will scale 

up to the state level, specifically Texas, to examine many strains of pandemic influenza. 

Once again, the authors used a stochastic compartmental model to evaluate the impact of 

an intervention strategy. Their model demonstrates that antivirals can be used effectively, 

by targeting, to contain a pandemic and lower the death rate, however, their method did 

not find a truly “optimal” antiviral allocation strategy. We determine the optimal release 

schedule with a mixed integer linear program (MIP).  

Although many variations of stochastic compartmental models have been coupled 

with sensitivity analysis on targeted intervention strategies to lower the morbidity and 

mortality of a pandemic, we found limited studies that used optimization to determine the 

minimum morbidity or mortality achievable through those strategies. These problems are 

very complicated due to non-linearity and stochasticity of the models. Patel, Longini, and 

Halloran (2005) use genetic algorithms (GA) and random mutation hill climbing 

(RMHC) algorithms to find near optimal vaccine distributions by minimizing the overall 

illness in the population and lives lost. Both GA and RMHC randomly vary combinations 

of decision variables to search for a near optimal solution to a non-linear optimization 

program.  
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They found the GA and RMHC produced an optimal vaccine distribution that was 

84% more effective than random mass vaccination in the mid-range of the vaccine 

availability (Patel et al., 2005). While we do not intend to use a GA or RMHC, the ability 

of an optimization program to develop a clearly superior vaccine distribution has been 

demonstrated through this study. We avoid a non-linear problem by using the results 

from a compartmental model to solve a stochastic linear program that produces the 

optimal antiviral distribution. 

More recently, Dimitrov, Goll, Hupert, Pourbohloul, and Meyers (2011) 

optimized the distribution of SNS antivirals in the United States with a large-scale 

optimization program. They combined a nationwide network model for inter-city travel 

throughout the United States with a compartmental model for intra-city disease 

progression to create a hybrid H1N1 transmission model (Dimitrov et al., 2011). They 

implement policy decisions on many stochastic simulations of pandemic influenza using 

this model. In order to optimize such a large set of time-based intervention policies, they 

utilize a creative optimization algorithm called upper confidence bounds applied to trees 

(UCT) that allows a multi armed bandit algorithm to avoid searching each branch of the 

tree and still find the optimal set of policies (Dimitrov et al., 2011). Eleven possible 

policy decisions where examined each month over a twelve month period: 0, 1, 5, 10, 25, 

or 50 million courses distributed proportional to population or prevalence (Dimitrov et 

al., 2011). They found that the optimal allocation of antivirals policy either matches or 

significantly outperforms the other policies, especially in response to extremely severe 

strains of influenza (Dimitrov et al., 2011).  

The Dimitrov et al. (2011) model approaches a very similar problem to what we 

will focus on in this thesis: the demographic, spatial, and temporal optimization of 

antivirals. This model differs from our model in that the scale of Texas does not demand 

such a complicated model. While our model seeks to determine a higher granularity by 

creating a very specific release schedule, it will not run along with the stochastic 

simulation. Rather, it takes in the results from many stochastic simulations to determine 

the optimal antiviral release schedule through the state of Texas. In doing this, we require 

a simple stochastic linear program instead of an intricate network search algorithm. 
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The Texas DSHS tasked Singh, Huang, Morton, Galvini, and Meyers (2013) 

through the University of Texas to create an antiviral optimization model to distribute 

antivirals geographically in the state of Texas. Their optimization model maximizes the 

access of targeted populations, either the entire population of Texas or the underinsured 

population, to antivirals throughout the state (Singh et al., 2013). The granularity of the 

model divides Texas into its 1939 ZIP code tabulation areas (ZCTAs). Their model uses a 

willingness-to-travel model to predict how far each ZCTA will travel for antivirals, but 

did not incorporate any variety of epidemic spread model (Singh et al., 2013). The model 

would not provide the infected population access to antivirals, but simply the target 

populations. 

The willingness-to-travel model used National Household Travel Survey (NHTS) 

data from 2009 to estimate the fraction of the target population that would travel to obtain 

antivirals (Singh et al., 2013). They assumed that the NHTS data could apply to similar 

travel trends in the state of Texas. Also, while the survey did not cover a willingness to 

travel to obtain medical care directly, they used social travel, such as a privately operated 

vehicle (POV) for travel to work, school, family, and social reasons, as a proxy, which 

likely underestimates the willingness to travel. 

Singh et al. (2013) used a type of mixed integer linear program (MIP) that is 

commonly referred to as a facility-location model. The program maximized the access of 

the target population by determining the optimal ZCTAs to distribute antivirals in the 

state of Texas (Singh et al., 2013). The ZCTAs would in turn distribute to the pharmacies 

to provide a point of pickup for the antivirals. The program was then run with GAMS 

using CPLEX. The optimization model was used to compare the tradeoff between the 

Texas population served antivirals and number of ZCTAs receiving antivirals for a target 

population of the entire population of Texas. As the number of people served increases, 

the marginal benefit decreases (Singh et al., 2013). The graph from Figure 12 shows the 

diminishing return in population served as the number of ZCTAs increases. 

 26 



 
Figure 12.  Efficiency tradeoff between expected population receiving 

antivirals and the total number of ZCTAs selected after optimized for 
entire population (from Singh et al., 2013). 

The Singh et al. (2013) optimization model is included in the Texas Pandemic Flu 

toolkit as the “Texas Antiviral Distribution.” We have created a new model that improves 

the distribution of antivirals. We add a time dimension to the antiviral distribution 

creating a temporal-spatial antiviral release schedule. We use the spatial-temporal results 

from the Texas Pandemic Flu Simulator, the Texas DSHS disease spread model, to 

optimize the release of antivirals to target the treatable population of Texas, the critical 

division of the infected compartment that has been symptomatic for less than 48 hours. 

We tailor the antiviral release schedule to recent influenza pandemics incorporating 

randomness into the disease parameters. Also, we expand the age-demographic 

granularity of the state of Texas to 20 categories, rather than just entire population and 

underinsured population.  
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III. MODEL 

A. OBJECTIVES 

We formulate an optimization model for use in an online tool to aid decision 

makers in the distribution of antivirals in the state of Texas. The Texas DSHS sponsored 

our project and currently uses it as a resource for pandemic response in Texas. Texas 

Antiviral Release Scheduling (TAVRS) is available to users online through an easy to use 

interface. Appendix A provides a tutorial on how a decision maker uses TAVRS to create 

an antiviral release schedule. It shows how the user can customize the antiviral 

distribution by selecting inputs such as strain type(s), pandemic geographic origin, 

current cases statewide, and optimization criteria. TAVRS then uses our model to 

optimize the antiviral release schedule. The output from our model is then displayed in 

TAVRS so that it can be easily interpreted and understood by the decision makers.  

We use IBM ILOG CPLEX (CPLEX, 2015) to solve our mixed integer linear 

program in the General Algebraic Modeling System, or GAMS (GAMS, 2015). My 

formulation uses the following sets: counties, time, and population group, which is a set 

of 20 age-demographic categories. The decision variables in the optimization program are 

the numbers of antivirals released to each county in each time period. The program 

optimizes the benefit of the antivirals that are picked up in each set. We use the number 

of sick individuals in the population that respond best to antivirals, known as the treatable 

population, to determine who seeks to pick up antivirals in each set. The user chooses one 

of three benefits to optimize: lives saved, hospitalizations avoided, or QALYs. The 

output from the model is number of antivirals released to each county at each time. 

We incorporate our optimization model into TAVRS to aid decision makers to 

answer the following:  

• Which counties in Texas should the Texas DSHS release antivirals to 
achieve the most benefit to the population of Texas?  

• When should Texas DSHS release antivirals? 
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• How can the antiviral release schedule target the sick population that 
responds best to antivirals? 

• How should the antiviral release schedule account for differences in 
societal and age demographic benefits? 

Taking these objectives into account, we first describe the sets and data of the 

optimization model in sections B and C respectively before presenting the mathematical 

formulation in section D, and then concluding with model assumptions in section E. 

B. SETS 

Time is the first set used in the model. This set is adjustable; it can be divided into 

small time periods, such as days. Using longer time periods produces a coarser model, 

but it is more practical operationally and computationally. The decision makers at Texas 

DSHS make decisions on the order of weekly, bi-monthly, or monthly rather than daily. 

Designing an adjustable time set ranging from weekly to monthly matches the 

requirements of the decision makers to the design of the program. 

The next set used in the optimization model is the counties. Texas is the second 

largest state in the United States and is comprised of 256 counties, seen in Figure 13. The 

largest counties are on the western side of the state, the largest of which is Brewster 

County with an area of 6,193 square miles. At the other end of the spectrum, the smallest 

counties are on the eastern portion of the state. The smallest county is Rockwall County, 

near Dallas, and is a miniscule 129 square miles in size. Populations of the counties also 

vary greatly. Texas has five major population centers: Houston, Dallas, Fort Worth, San 

Antonio, and Austin. The counties associated with these cities are very large. The most 

populated county in Texas is Harris County, which includes Houston with just over 4 

million people living in it. Harris County contains twice as many as the next most 

populated county. The least populated county in Texas is Loving County, near the border 

with New Mexico, with a population of just 82 people. The disparity in size and 

population of counties in Texas makes distribution of antivirals an interesting problem. 

The counties in Texas are identified according to their Federal Information 

Processing Code (FIPS) number. The state of Texas has the state FIPS code of 48. The 

 30 



counties in Texas begin with Anderson County that has a FIPS code of 1, followed by 

Andrews at 3. The number increases with odd numbers sequentially through all Texas 

counties, ordered alphabetically.  

 
Figure 13.  The counties in Texas (from Geology.com, 2015). 

The final set of the optimization model is population groups, which corresponds 

to 20 mutually exclusive and exhaustive age-demographic categories. We base these sets 

on the work of Meyers, Medlock, and Galvani (2009). Their age-structured SEIR model 

divided the population into 17 age groups (0, 1–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–

34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, and 75+) based on 2007 

census data. These 17 groups were combined into 5 age groups (0-4, 5–17, 18–44, 45–64, 

65+) for larger granularity and easier interpretation. 

Each age group is broken down further into four demographic groups: high-risk 

for influenza complications (high-risk), low-risk for influenza complications (low-risk), 

first responders, and pregnant. In the epidemiological sense, high-risk is defined as 

having a chronic condition such as asthma, chronic bronchitis, emphysema, coronary 
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heart disease, angina, heart attack, diabetes, stroke, weak kidney, epilepsy, cerebral palsy, 

movement disorders, and muscular dystrophies (Medlock et al., 2009). Also, immune 

system compromised conditions, such as cancer in the past 3 years, HIV/AIDS, dialysis, 

and organ transplant, are included in the high-risk category as well (Medlock et al., 

2009). Table 1 shows the proportion of each age group that is high risk. While the age 

groups in the Table do not line up with the model’s age groups, it is assumed that the 

people are distributed uniformly in each age group.  

Also, the population of each county has a percentage of worried-well. The 

worried-well represent the portion of the population that has influenza like symptoms yet 

does not in fact have the disease. They unnecessarily admit themselves to local hospitals 

and remove valuable intervention resources from pharmacies (Doshi, 2009). The worried-

well are modeled as 0.07 percent of the population. 

Table 1.   Proportion of high-risk population (from Medlock, Meyers, & 
Galvani, 2009). 

 

C. DATA 

Major data inputs into the antiviral release schedule optimization model are the 

time, location, and population group of treatable sick people, the benefit from these 

people picking up antivirals, and the locations and times that the antiviral courses become 

available to be released. It is important to note here that this tool is available only to 

Texas DSHS decision makers. The availability of antivirals is not disseminated to the 

public. 
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1. Treatable Population Data Input 

The treatable population is the first input into the antiviral optimization program. 

In this section we define treatable population data, investigate its source, and discuss its 

structure. Then we investigate how to add randomness into the input by taking the 

expected value of many influenza scenario runs. 

a. The Treatable Population 

The antiviral release schedule targets the sick population in Texas that will 

respond best to antivirals, known as the treatable population. The data is not empirical; it 

comes from the results of an influenza spread simulation using the Texas Pandemic Flu 

Simulator (TPFS), discussed in Chapter 2. According to this simulation, as a disease 

spreads the population of Texas will progress from the susceptible compartment, to the 

exposed compartment, to the infected compartment (Sick), and finally either recover or 

become deceased. The treatable population is a subgroup of the infected population 

compartment that has been symptomatic for less than 48 hours. TPFS tracks the number 

of treatable individuals in each set during a simulation run. The individuals in this brief 

window will have the greatest impact from using antivirals.  

The TPFS requires several different parameters to simulate the spread of 

influenza pandemic through the population of Texas. These parameters can be divided in 

three types: disease parameters, origin of initial cases, and intervention allocation and 

parameters. Intervention allocation includes ventilator distribution, antiviral release 

schedule, and vaccine allocation. Along with each intervention allocation is intervention 

parameters. We did not use any intervention allocations in our disease-spread simulation, 

however the antiviral release schedule and associated parameters will be used later in the 

analysis. The disease parameters along with their definitions are as follows: 

 

• Basic Reproduction Number, R0: is the number of new cases one case 
creates on average throughout the course of its infectious period in an 
uninfected population. 

• Latency Period (Days): average latency period of the influenza strain.  
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• Asymptomatic Period (Days): the average asymptomatic infectious period. 

• Infectious Period (Days): is the average total infectious period. 

• Case Fatality Rate: denotes the fraction of infected individuals that will 
die as a result of infection, divided by age groups.  

The location, timing, and population group of treatable individuals will vary 

between two simulation runs with identical disease and geographic origin parameters. 

This is because the TPFS incorporates randomness into the movement of individuals 

geographically as well as movement of individuals between compartments through the 

course of the pandemic. An average of multiple simulation runs with identical parameters 

will provide a more accurate picture of how treatable people will change throughout the 

course of a pandemic. 

Figure 14 shows an example of how the treatable population changes as an 

influenza pandemic spreads through Texas, known as treatable curves. It shows the 

average number of treatable people from selected counties over 150 simulations for a 

mild strain of influenza with the same border geographic origin propagating through the 

5–24 high-risk population. The number of treatable people in El Paso County peaks 

approximately 50 days prior to when Travis County, where Austin is located, peaks. 

Travis County, in turn, peaks a little more than 50 days before Dallum County peaks. El 

Paso is located in the extreme western part of Texas, while Austin is located in the very 

center and Dallam is located in the rural panhandle. As can be seen, the timing, location, 

and number of treatable people will vary greatly throughout the course of an influenza 

pandemic  
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Figure 14.  Expected treatable people 5–24 high-risk group for selected 

counties. 

b. Library of Scenarios: Varying Pandemic Parameters 

TAVRS must be able to model antiviral release schedules for different influenza 

scenarios. Each influenza scenario involves a unique influenza strain originating in 

certain geographic region. A library of treatable curves is incorporated into TAVRS to 

give decision makers the ability to model different pandemic scenarios that could occur 

in Texas. TAVRS averages the treatable curves for the scenario or scenarios that a 

decision maker wishes to model in order to be used in our optimization model. 

The TAVRS library of scenarios consists of 2,250 individual treatable curves 

created through the TPFS by varying five different strains of influenza with three 

geographic origin regions resulting in 15 influenza scenarios of 150 simulation runs each. 

Within each influenza scenario of 150 runs, similar disease and geographic origin 

parameters were chosen but held constant. Disease and geographic origin parameters 

were varied from among a similar set to incorporate additional randomness into an 

already stochastic disease spread model.  
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 Two disease parameters, basic reproduction rate (R0) and CFR, were manipulated 

to simulate the five strain types (2009-like, 1968-like, 1957-like, 1928-like, and 1918-

like). For each influenza strain type, the case fatality rates remained constant for each 

applicable age group. The R0 for each strain was randomly selected between the upper 

and lower bounds for each simulation run. The rows of Table 2 show the five epidemic 

strains that were included in the TAVRS library along with the parameter values of each. 
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Table 2.   CFRs and R0 selection for strain simulations (from Meyers & Dimitrov, 2014). 

 
 

 37 



While the CFR was held constant for each run within a scenario and the R0 was 

varied within its associated range for each scenario, the remainder of the influenza 

disease parameters stayed constant throughout all the runs in all the scenarios. Table 3 

shows the values of the remaining disease parameters.  

Table 3.   Disease parameters for creation of treatable data. 

 
 

The three geographic origin regions were created by varying the number and 

location of counties and the number of initial cases in each of those counties. The 

locations for the three geographic origin regions are determined by randomly selecting a 

uniform number of counties between 1 and 10 from all counties in Texas (Random), from 

all counties after being weighted by population size (Population), and from Mexico 

border counties weighted by migration rates (Border). Within each county selected, the 

number of initial cases was randomly selected from a uniform distribution of 1 to 20 

cases. Table 4 shows the variations of the each geographic origin region. 

Table 4.   Geographic origin region parameters (from Meyers & Dimitrov, 
2014). 

 
Our optimization model uses the average number of treatable individuals for each 

time in each county for each population group. For example, if the decision maker wishes 

to create an antiviral release schedule for a 1918-like Spanish influenza that originated 
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from Texas-Mexico border counties, TAVRS would average the 150 treatable curves that 

apply to that influenza scenario to be used in our optimization model. If the decision 

maker wishes to create an antiviral release schedule for an influenza that could be similar 

to a 1957-like or a 1968-like that originated from the population centers in Texas, 

TAVRS would average the 300 treatable curves that apply to those influenza scenarios to 

be used in our optimization model. 

2. Antiviral Benefit 

We next consider the benefit that the antivirals provide for the target population. 

We examine three separate objectives in the model to provide the decision makers with 

the flexibility to target certain benefits. The three benefits are maximizing lives saved, 

hospitalizations avoided, and Quality Adjusted Life Years (QALYs). We derive the 

benefit of minimizing deaths and hospitalizations using odds ratios and relative ratios, 

respectively. The subsequent calculation of QALYs is an extension of the lives saved 

which incorporates the remaining life expectancy of the age group of the life saved. 

a. Lives Saved  

The lives saved benefit is defined as the number of lives saved when the treatable 

population picks up antivirals. This benefit is calculated by using two values: the 

mortality odds ratio and the case fatality rates. The case fatality rates are the same strain 

specific rates from the disease spread model inputs (see Table 2). They are the rate at 

which the infected population will die due to the disease or complications from the 

disease. The mortality odds ratio is the odds that an infected person will die given 

antiviral treatment compared to dying without antivirals. More specifically, this is the 

measure of the odds of an exposed group (antivirals) experiencing a certain outcome 

(death) against the opposite outcome (survived) compared to the odds of an unexposed 

group (no antivirals) with that same ratio. In this odds ratio, both the unexposed and 

exposed groups are infected with influenza. Equation 1 explains the mortality odds ratio 

mathematically.  
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   (1) 

If the odds ratio is approximately equal to one, then antivirals have no effect on 

the odds of death. If the odds ratio is less than one then antivirals will decrease the odds 

of death. The mortality odds ratio information comes from a metadata study on close to 

30,000 patients during the 2009 Swine flu pandemic (Muthuri, et al., 2014). Table 5 

summarizes the mortality odds ratio for each age demographic group. Administering 

antivirals to pregnant women between 25 and 49 years of age carries a significantly better 

improvement in mortality rate (odds ratio is 0.46) compared to high-risk individuals 

between the ages of 5 and 24 with an odds ratio of 0.82. 

Table 5.   Mortality odds ratios. 

 
 

The lives saved benefit is found by subtracting the probability an infected person 

dies from influenza after receiving antivirals from the probability an infected person dies 

from influenza without antivirals. The probability an infected person dies from influenza 

without antivirals is known as the case fatality rate (see Table 2), which is dependent on 
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strain type and age group. After substituting CFR and Probability of death after receiving 

antivirals into the definition of odds ratio (Equation 1), straightforward algebra yields: 

   (2) 

 

Hence, the decrease in probability of death follows: 

   (3) 

Using this calculation, the age-demographic specific lives saved benefits were 

calculated. The lives saved benefits for 2009-like Swine flu and 1918-like Spanish flu, in 

units of lives saved per antiviral, are displayed in Table 6. The lives saved benefits for 

Spanish flu are much higher than Swine flu representing a potential for much greater life 

savings when the treatable population uses antivirals during a severe strain. The potential 

for saving lives during a mild strain, where not many people die, is much less. There is a 

negative benefit for the worried-well at the bottom of the table. This value represents the 

potential benefit lost because a possible antiviral is not available for infected person. We 

determined this to be the negative value of the average benefit to the total population of 

Texas. 
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Table 6.   2009-like swine flu and 1918-like Spanish flu lives-saved benefit. 

 
 

b. Hospitalizations Avoided 

The hospitalizations avoided benefit is defined as the improvement in the 

probability of a person becoming hospitalized when administered antivirals. When this 

benefit is applied to the number of people receiving antivirals in Texas, the result is a 

total number of hospitalizations avoided. This benefit is calculated using hospitalization 

rates and hospitalization relative risk, a slightly different comparison ratio than odds 

ratio. Hospitalization rates are the age-demographic rates that the infected population will 

be hospitalized due to the disease. Hospitalization rates are in units of hospitalizations per 

100,000 person years.  

Hospitalization relative risks are the relative risk a person infected with influenza 

will become hospitalized after using antivirals compared to without using antivirals. 

More specifically, this is the measure of the risk of an exposed group (antivirals) 

experiencing a certain outcome (hospitalized) against all the people in the exposure group 

(antivirals) compared to the risk of an unexposed group (no antivirals) with that same 

ratio. In this relative risk of hospitalizations, both the unexposed and exposed groups are 

infected with influenza. Equation 4 explains the hospitalization relative risk 

mathematically. 
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   (4) 

Table 7 shows the hospitalization rates and hospitalization relative risks for each 

age-demographic group. The hospitalization rates are based on (Thompson, et al., 2004). 

The Hospitalization relative risks are based on (Dutkowski, 2010), (Lee, et al., 2007), and 

(Siston, et al., 2010)). 

Table 7.   Hospitalization rates and hospitalization relative risk. 

 
 

The hospitalizations avoided benefit is found by subtracting the probability of an 

infected person becoming hospitalized due to influenza after given antivirals from the 

probability of an infected person becoming hospitalized due to influenza without being 

given antivirals. The probability an infected person becomes hospitalized from influenza 

without antivirals is known as the hospitalization rate (Table 7), which is dependent on 

population group. After substituting hospitalization rate and Probability of hospitalization 

after receiving antivirals into the definition of relative risk (Equation 5), simple algebra 

yields: 

   (5) 

Therefore, the decrease in probability of hospitalization follows: 

   (6) 
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Using this equation, the age-demographic specific hospitalizations avoided were 

calculated. The hospitalizations avoided benefits, in units of lives saved per antiviral per 

100,000 people, are displayed in Table 8. This metric, unlike lives saved, does not 

depend on flu strain and, therefore, remains constant for all strains. Once again, the 

worried-well have an impact. They detract from the hospitalizations avoided benefit with 

the negative value of the average hospitalizations avoided from all populations groups. 

Table 8.   Hospitalizations avoided benefit. 

 
 

c. QALYs 

The quality adjusted life years benefit is a variation off of the lives saved benefit. 

The basic premise is that a younger life saved is worth more than an older life saved 

because they are expected to have more years left before they die. This is done through 

the expected lifetime for each age group, calculated by using (United States Social 

Security Administration, 2009). The QALYs benefits for 2009-like Swine flu and 1918-

like Spanish Flue, in units of expected quality adjusted life years saved per antiviral, are 

displayed in Table 9. The worried-well are included in the QALYs antiviral benefit table 

as well. They take the value of the negative benefit of the average QALY benefit over all 

population groups. 
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Table 9.   2009-like swine flu and 1918-like Spanish flu QALYs benefit. 

 
 

3. Antiviral Availability 

The third data input into the optimization program is the time-phased number of 

antivirals available. The courses of antivirals available are a combination of the Texas 

DSHS cache, the General Reserve cache, and the release of the Texas allotment from the 

Strategic National Stockpile. This availability is adjustable based on the user inputs. For 

example, initially Texas may have 100,000 antiviral courses stored and ready to use. 

They may expect to receive 2,000,000 antiviral courses one month after the onset of the 

pandemic and an additional 2,000,000 courses two months after.  
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D. FORMULATION 

Indices 
t T∈    set of time increments (adjustable days, weeks, bi-weeks, months)  
   T={T1,T2,…} 

   set of all counties in Texas (FIPS code) C={1,3… 507} 
p P∈  set of all mutually exclusive population groups (age/risk group) P= 

{“0-4 years high risk,”“ 25–49 years pregnant women”…} 
 
Data 

  expected number of people seeking antivirals in county c, in  
   population group p, at time t 

   expected benefit of a person in population group p receiving  
   antivirals [lives saved, hospitalizations avoided, QALYs saved] 

   additional antivirals courses available for distribution at time t  
   [integer] 

  large constant equal to the total number of antivirals 

available     during the entire planning period [integer] 
 
Decision Variables 

   number of antivirals released in county c at the start of time t  
   [courses] 

 number of people picking up antivirals in county c, population 
group p, in time t [expected number of people] 

 number of antivirals available on the shelf in a county c at time t 
[expected courses] 

 fraction of the demand for antivirals satisfied in county c in time t; 
[0-1] 

 equal to 0 if all the demand for antivirals in county c in time t is 
satisfied and 1 otherwise; [binary] 

 
Formulation 
 

  (7) 

 
Subject to: 
 

  (8) 
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  (9) 

  (10) 

  (11) 

 (12) 
 (13) 

 (14) 

 (15) 

  (16) 
  (17) 

  (18) 
 

E. EXPLANATION OF FORMULATION 

The optimization formulation is broken down into three parts: decision variables, 

the objective function, and the constraints.  

1. Decision Variables 

The decision variables in the optimization program are made up of three positive 

real variables, a fraction between 0 and 1, and a binary variable. The positive variables, 

Rc,t, Pc,p,t, Sc,t, govern the number of courses of antivirals released, the number of courses 

of antivirals that are picked up, and the number of antivirals remaining on the shelf, 

respectively. The fraction Fc,t and a binary variable Xc,t are also important variables to 

determine who picks up antivirals if a shortage of antivirals exists. The large constant M 

is used to set the fraction of each population that can pick up antivirals if an antiviral 

shortage exists. 

The solution to the integer linear program provides the optimal number of courses 

of antivirals to release to county c at the beginning of time frame t. This is ultimately the 

number that is most important number to the decision maker to create the antiviral release 

schedule. The formulation represents the ability of the state to distribute courses of 

antivirals to counties, which then in turn distribute to pharmacies. The antivirals will be 
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on a first come first serve basis as it is released to the pharmacies. Unless an extreme 

situation exists during the course of a pandemic, Texas DSHS is unable to instruct the 

pharmacies to only provide antivirals to a particular demographic age group.  

The value of Pc,p,t is the number of antiviral courses that are picked up by 

population group p, during time frame t, in county c. The value of Pc,p,t depends on 

whether the entire treatable population of that county is satisfied with antivirals and the 

composition of age-demographic groups in a county. If the expected total treatable 

people, the “demand” for antivirals, in a particular county c and timeframe t are not 

satisfied by the number of antivirals on the shelf a shortage exists. In this case, the model 

assumes that the each age-demographic group will pick up the antiviral courses off the 

shelf with the same proportion. If the “demand” for antivirals is satisfied, there is no 

shortage and therefore no restriction on which population group picks up antivirals 

because everyone that wants antivirals can get them.  

The decision variable Sc,t denotes the number of antivirals on a shelf in county c 

during time frame t. The fraction Fc,t sets the fraction of each population group that picks 

up antivirals in an antiviral shortage situation. Finally, the binary variable Xc,t denotes 

when a shortage exists by taking the value of 1 if the demand, the treatable people, are 

not satisfied, and a 0 otherwise. 

2. Objective function 

The objective function will maximize the expected total benefit of all the 

antivirals picked up. Equation (7) sums the benefit for each population group picking up 

a course of antiviral multiplied by the number of people in that population age group 

picking up a course of antiviral over each population group p, each county c, and each 

time frame t. Maximizing this value in the objective function will maximize the number 

of lives saved, number of hospitalization avoided, or the expected number of life years 

saved. 
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3. Constraints 

The first constraint prevents the formulation from releasing more antivirals than 

are actually available. For every time t, equation (8) sums the number of antivirals 

released on or before time t to each county c on the left side. This value is set to remain 

less than or equal to the number of courses of antivirals that are available on or before 

time . Constraint set (9) sets the number of antivirals on the shelf in the initial time 

frame to equal to the number of antivirals released in the initial time frame for each 

county. This constraint can be adjusted later to account for alternate initial conditions. 

Equation (10) accounts for the carry-over of unused antivirals from one time 

frame to the next. For every county c and time t that comes after the initial time frame, 

the number of antivirals on the shelf is equal to the number of antivirals released during 

that time frame plus the number of antivirals on the shelf the time frame prior minus the 

number of antivirals picked up by all the populations groups during the time frame prior.  

Equation (11) prevents more antivirals than are on the shelf from being picked up. 

The equations sets the number of antivirals picked up by all the population groups to be 

less than or equal to the number of antivirals on the shelf at time t in county c. Equation 

(12) prevents more antivirals from being picked up than there is demand. For every 

county c, population group p, and time frame t, the number of antivirals picked up must 

be less than or equal to the number of people seeking antivirals. 

The next three equations govern how the antivirals are picked up if a shortage 

exists, that is if the total demand for antivirals is greater than the number of antivirals on 

the shelf. Conversely, if all the treatable people can be satisfied, a shortage does not exist. 

Equation (13) sets the shortage binary variable, Xc,t, if a shortage exists. If the demand for 

antivirals is not satisfied in time period t and county c, then the variable Xc,t is set to 1. 

Also, if a shortage exists, equation (14) ensures that the same fraction of individuals 

receives antivirals in each population group for time frame t and county c. This prevents 

any discrimination between population groups picking up antivirals. 

 Equation (15) sets the shortage variable, Xc,t, to zero if the demand cannot be met. 

Setting the shortage variable to zero subtracts the large M from the right side, relaxing the 

 49 



fraction of the population satisfied. Finally, Equation (16) ensures that all the demand is 

satisfied if no shortage exists. 

The final two equations (17) and (18) define the range of values for the decision 

variables. The binary variable Xc,t is set to take on either 1 or 0 in equation (17). Rc,t, Pc,p,t, 

Sc,t, and Fc,t are all set to be continuous variables greater than or equal than 0 with 

equation (18). Specifically, we create the release variable, Rc,t, as a continuous variable 

for efficiency. This will produce fractional releases of antivirals. In reality the antivirals 

are released in batches, however, it is unlikely that modeling Rc,t as an interger or as 

batches would change the release guidance output from the model.  

F. ASSUMPTIONS MADE ABOUT THE MODEL 

The optimization model requires certain assumptions to be made. First, the model 

assumes that the pickup of antivirals by the treatable population will not affect the 

transmission of the influenza pandemic and therefore have no effect on the progression of 

the disease through the population. This allows the model to be run with the results of the 

disease spread simulation model and not simultaneously. 

The next assumption involves the worried-well population. The worried-well is 

the population that has not contracted the influenza virus but is seeking antivirals. They 

may have flu like symptoms or just be extremely worried. The optimization model 

assumes that the if the worried-well population picks up antivirals, then it will have a 

negative effect on the benefit. This negative benefit, instead of zero benefit, represents 

the taking of an antiviral from a person that needs it. 

Also, the model assumes that antivirals picked up by each member of a population 

group will have the same effect. The model assumes that all of the treatable population 

will seek antivirals. Finally, the model assumes that each population group will pick up 

the same fraction of antivirals if a shortage exists. 
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IV. RESULTS AND ANALYSIS 

The Texas Antiviral Release Scheduler, with our antiviral optimization model, is 

currently available to the Texas DSHS as an online tool in the Texas Pandemic Flu 

Toolkit through the following link: http://flu.tacc.utexas.edu/scheduling/. A walk-through 

example of how to create an antiviral release schedule with TAVRS can be found in 

Appendix A, although access is required to use the online tool.  

TAVRS quickly provides decision makers at the Texas DSHS optimal antiviral 

release schedules using the current and expected conditions of the influenza pandemic in 

Texas. Using a weekly antiviral release schedule, a typical GAMS (GAMS, 2015) model 

has approximately 750,000 variables, including 16,000 binary variables, and slightly over 

400,000 constraints. The CPLEX (CPLEX, 2015) solver generally finds the optimal 

solution in less than 15 seconds on a 2012 MacBook pro using OS X Yosemite 10.10.2 

emulating Windows 8.1, however for a 2009-like border scenario it takes approximately 

two minutes and 32 seconds. 

Although many variations of antiviral release schedules can be created using 

TAVRS, the following chapter initially examines the worst-case scenario: A 1918-like, 

Spanish, influenza spreading through the population of Texas. We then vary the 

parameters to examine how the results change. The variations include variations of the 

geographic origin the pandemic, variation of the strain to a 2009-like influenza, variations 

of the total number of antivirals available, and variations of the objective that TAVRS 

optimizes. Following this sensitivity analysis, we compare the lives saved using TAVRS 

to the calculated lives saved using the Texas Pandemic Exercise Tool, a downloadable 

version of the Texas Pandemic Flu Simulator disease spread model for use on a personal 

computer.  

A. 1918-LIKE INFLUENZA PANDEMIC 

The base case considers a 1918-like influenza pandemic that begins in a random 

county in the state of Texas and maximizes the number of lives saved. We assume 30 

million antivirals are available immediately at the onset of the pandemic. This number of 
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antivirals ensures that each person in Texas could have access to them, although this 

number is much larger than will be needed. The base case scenario represents the best 

response available to a worse case influenza strain. 

Figure 15 shows the number of antivirals released to the entire state at each time 

period throughout the course of the pandemic. It also includes the number of expected 

cases treated, which correlates to the number of antivirals picked up by the treatable 

population, the P decision variable from the optimization formulation. The courses 

wasted are the number of antivirals that picked up by the worried-well population. 

Finally, the last trend line displays the number of treatable people that do not have access 

to antivirals due to the release schedule. Not shown in the figure is the optimal number of 

lives saved; TAVRS maximizes the number of lives saved to be 26,552 lives. 

The graph from Figure 15 shows that the antivirals are not all released 

immediately. The largest single distribution, approximately four million antivirals, is 

released at week seven, which is just prior to the largest rise in treatable cases of 

influenza. The leading edge of the treatable cases begins to rise during the fifth week and 

peaks during the 11th week at close to 1.7 million cases. The antiviral release schedule 

continues to distribute antivirals in two more bulk releases during weeks nine and eleven, 

but not as large as the week seven release. After week 12, the antivirals begin to be 

distributed in smaller and smaller releases, ultimately finishing after week 27. The 

courses wasted stays constant at roughly 200,000 courses from week five through week 

23, the majority of the pandemic.  

The base case represents an unrealistic situation with 30 million antivirals 

available, but this situation may illustrate a weakness of the model. Due to the scale of 

the chart in Figure 15 the infected without antivirals appears to be zero, but actually 

climbs to 20,000 and 5,000 at the beginning and end of the pandemic respectively. The 

treatable population is not released enough antivirals to satisfy the demand when the 

number of worried-well is greater in counties at the beginning and end of the pandemic, 

even though there is an extreme surplus of antivirals available. The curves from Figure 

16 show the total number of antivirals released is slightly greater than 14 million, much 

less that the 30 million available.  
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Figure 15.  Time phased statewide antiviral release schedule in response to a 

1918-like random-origin influenza pandemic with unlimited antivirals 
maximizing lives saved (after Texas Antiviral Release Scheduling, 

2015). 

 
Figure 16.  Time phased cumulative statewide antiviral release schedule in 

response to a 1918-like random-origin influenza pandemic with 
unlimited antivirals maximizing lives saved (after TAVRS, 2015). 

 

 

 53 



Snapshots from the antiviral release schedule are displayed geographically in 

response to the base case pandemic in Figure 17. The week three antiviral release 

locations show the small initial release of antivirals prior to the rise in number of 

treatable cases. The locations in week three run north to south through the center of the 

state and are primarily rural counties. During the initial rise in treatable cases, week seven 

shows that the majority of the counties in Texas are released antivirals, including the 

heavily populated counties of Forth Worth, Dallas, San Antonio, and Houston. The large 

release in week seven may be a byproduct of releasing antivirals to the most populated 

counties in the state. The worried-well would consume too great a proportion if the large 

release of antivirals occurs earlier. If the large release to the populated counties occurred 

later, it would miss the rise in treatable people. Week nine continues the widespread 

distribution of antivirals, but withholds the release in the populated counties of San 

Antonio, Houston, and Fort Worth. Finally, week 25 shows the last few counties that are 

released antivirals at the end of the pandemic. 
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Figure 17.  Week 3, 7, 9, and 25 statewide geographic antiviral release 

schedule snapshots in response to a1918-like random-origin influenza 
pandemic with unlimited antivirals maximizing lives saved. Antivirals 

are released to the counties in green (after TAVRS, 2015). 

The antiviral release schedule to the base case influenza pandemic with unlimited 

antivirals only requires approximately 14 million antivirals which are used to treat a total 

of roughly 11 million treatable cases. Variations to the total number of antivirals 

available will be investigated further in later section of this chapter. Also, the release of 

the majority of the antivirals in bulk batches preceding the rise in treatable cases is an 

interesting trend. The base case release also releases all the antivirals in a relatively quick 

window because the disease spreads very rapidly throughout the Texas population.  
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B. VARIATIONS 

In this section we vary four TAVRS input parameters, geographic origin, 

pandemic type, initial supply of antivirals, and objective optimization variation, to 

analyze the response of the resulting antiviral release schedule. The two variations of 

geographic origin are a border origin scenario and a population weighted origin scenario. 

Following that, the influenza type is varied to mimic a 2009-like influenza pandemic. The 

next variation examines limiting the number of antivirals available to 14 million, 6.1 

million and 2 million. Finally, the objective function of the optimization program in 

TAVRS is changed to maximize hospitalizations avoided and QALYs saved. 

1. Geographic Origin Variation 

In our analysis, we will only vary one parameter at a time from the base case of a 

1918-like random origin influenza pandemic with unlimited antivirals that maximizes the 

number of lives saved. Only the geographic origin will be varied in the following section. 

TAVRS varies the geographic origin of the influenza pandemic by averaging a different 

set of treatable files from the stochastic scenario library. The base case averaged the 

number of treatable persons in each time frame in each county and each population group 

from the 150 treatable person curves from 1918-like random origin influenza pandemic. 

The variation in geographic origin will change the set of treatable person curves that are 

averaged to a 1918-like border origin and then to a 1918-like population weighted origin. 

a. Border Origin 

In the Border origin variation, the geographic origin of the base case is changed to 

a Texas-Mexico border origin. The geographic location of the initial treatable cases, used 

to create the averaged treatable person curve, originates randomly but with greater 

frequency from the counties in Texas that share a border with Mexico. After the initial 

cases, the disease spreads without restriction throughout the counties in Texas. TAVRS 

maximizes the number of lives saved in the boarder origin variation to be 16,002 lives. 

TAVRS expects to save more lives in response to border-origin influenza pandemic. The 

graph in Figure 18 shows the TAVRS recommended time phased statewide release of 

antivirals in response to the base case scenario with a border origin. The chart is very 
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similar to the initial antiviral release schedule. It recommends the largest single release of 

3.5 million antivirals at the seven week time period ahead of the rise in treatable persons 

curve. This initial peak release is followed by smaller peak releases at week ten and 

twelve.  

 
Figure 18.  Time phased statewide antiviral release schedule in response to 

a1918-like border-origin pandemic with unlimited antivirals 
maximizing lives saved (after TAVRS, 2015). 

Figure 19 shows that the county location snapshots of the antiviral release 

schedule with a geographic variation of the base case differ greatly from the location 

snapshots of the random-origin base case scenario. The same time period snapshots as the 

base case are shown: week three, seven, nine, and 25. The antivirals are distributed in 

week three to just the border counties. By week seven, almost all the counties in Texas 

receive antivirals including the population centers of Houston, Austin, Forth Worth, and 

Dallas. Week nine continues to release antivirals to the majority of counties in Texas, 

however the populations centers that received antivirals in week 5 are not released any 

new antivirals. Week 25 shows the last few rural counties in the center of Texas receive 

antivirals as the pandemic comes to a conclusion. 
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Figure 19.  Week 3, 7, 9, and 25 statewide geographic antiviral release 

schedule snapshots in response to a 1918-like border-origin influenza 
pandemic with unlimited antivirals maximizing lives saved. Antivirals 

are released to the counties in green (after TAVRS, 2015). 

While the geographic origin is varied, the time phased release of antivirals 

remains very similar to the base case time phased release schedule. The total number of 

antivirals released is still approximately 14 million. However, as one might expect, the 

recommended geographic antiviral release schedule for the border scenario varies greatly 

the recommended geographic antiviral release schedule for the base case. 
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b. Population-Weighted Origin 

In the population-weighted variation, the geographic origin of the base case is 

changed to a random origin that is weighted to the larger population centers in Texas. The 

geographic location of the initial treatable cases, used to create the averaged treatable 

person curve, originates randomly but with more frequency in the counties with larger 

populations. TAVRS maximizes the number of lives saved this variation to be 15,508 

lives. TAVRS expects to save fewer lives in response to border-origin influenza 

pandemic than a random origin. Figure 20 displays the TAVRS recommended time 

phased statewide release of antivirals in response to this variation than with a random 

origin. The chart is very similar to the base case antiviral release schedule; however, it 

recommends the largest single release of just over three million antivirals earlier, during 

week five, instead of week seven. This earlier initial peak in the release of antivirals 

correlates to a quicker rise in the number of treatable people. Also, the conclusion of the 

release of antivirals is earlier than the base case as well, at roughly 25 instead of 27 

weeks. 

 
Figure 20.  Time phased statewide antiviral release schedule in response to 

a1918-like population-weighted-origin pandemic with unlimited 
antivirals maximizing lives saved (after TAVRS, 2015). 
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The county snapshots from the population-weighted origin, shown in Figure 21, 

again vary from the random origin geographic distribution. Figure 21 shows the TAVRS 

recommended locations for the release of antivirals in weeks three, five, seven, and 25. 

These weeks are shown because the disease progresses a little quicker than the base case. 

The week 3 geographic release of antivirals only includes three rural counties in south-

central Texas. Week five shows the rapid increase from week three to distribute the 

largest release of antivirals throughout the pandemic. The major population centers of 

Austin, Houston, Dallas, and San Antonio are released antivirals in this time frame. Week 

7 releases antivirals to a similarly large number of counties in the state, but with slightly 

less number of antivirals. Week 25 shows the last few counties to receive antivirals as the 

pandemic comes to a conclusion.  
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Figure 21.  Week 3, 5, 7, and 25 statewide geographic antiviral release 

schedule snapshots in response to a 1918-like population-weighted-
origin influenza pandemic with unlimited antivirals maximizing lives 
saved. Antivirals are released to the counties in green (after TAVRS, 

2015). 

Overall, the variation of the geographic origin of 1918-like influenza results in a 

more rapid rise in treatable people, leading to the faster distribution of antivirals 

throughout the state. This could be due to the population-weighted origin of the pandemic 

in the larger population counties, which usually have a higher population density. The 

closer contact in denser populations could account for the quicker rise in the number of 

treatable people and the subsequent quicker TAVRS recommended release of antivirals. 

 61 



The geographic distribution of the release of antivirals is similar to the base case but 

accounts for the quicker progression of the pandemic. 

2. Pandemic Variation (2009-Like Pandemic) 

The next TAVRS input parameter to be varied from the base case is the historic 

influenza pandemic strain. Recall that that influenza strains in TAVRS are categorized 

into historic pandemic influenza strains, each of which has specific ranges of pandemic 

parameters. TAVRS averages only the set of treatable person curves that were created 

with the disease parameters from the historic influenza pandemic strain selected by the 

user. TAVRS optimizes the antiviral release schedule with this specific average treatable 

persons curve. Our analysis only changes the pandemic strain from the base case, from 

1918-like to 2009-like, while keeping all other parameters the same. 

Figure 22 shows the time phased statewide antiviral release schedule in response 

to a 2009-like pandemic with a random origin pandemic with unlimited antivirals that 

maximize lives saved. The release schedule is similar to the base case that responds to 

1918-like pandemic influenza because the timing of the largest single release, at week 11, 

precedes the rapid rise in treatable persons. However, the 2009-like pandemic influenza 

does not spread as rapidly as the 1918 pandemic influenza resulting in a prolonged 

epidemic that is less severe. The total treatable persons do not exceed 8 million and the 

total TAVRS recommended antivirals released is just over 12 million with no single 

release exceeding 2 million antivirals. As one would expect, both metrics support the 

observation that the 2009-like influenza pandemic was a much more mild strain than the 

1918-like Spanish flu. TAVRS maximizes the number of lives saved in the 2009-like 

variation to be 195 lives. Fewer people become infected and therefore cannot be treated 

and saved so the number is much less than Spanish flu influenza pandemic. 
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Figure 22.  Time phased statewide antiviral release schedule in response to a 

2009-like random-origin pandemic with unlimited antivirals 
maximizing lives saved (after TAVRS, 2015). 

The geographic distribution of the antiviral release schedule was similar to the 

base case geographic distribution extended over the longer duration and releasing fewer 

antivirals. The border and population weighted geographic origin variations demonstrated 

the same county snapshots at later times than the 1918-like influenza pandemic. There are 

a greater number of releases, with fewer antivirals released in each, as demonstrated by 

the greater number of spikes in the chart from Figure 22. Overall TAVRS recommends a 

milder response to the influenza pandemic that has been varied to mimic the 2009 swine 

flu. 

3. Antiviral Release Variation 

The total number of antivirals available to be released is the next TAVRS 

parameter to adjust. The antiviral release schedule to the base case scenario, the 1918-like 

random-origin influenza pandemic, recommended that only 14 million antivirals be 

released even though the optimization program could release up to 30 million. According 

to TAVRS, releasing more than 14 million antivirals does not improve the lives saved. 
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The next section examines three variations in the total number of antivirals available to 

TAVRS to release: 14 million, 6.1 million, and 2 million. 14 million total antivirals are 

expected to provide the same reduction in deaths as the release of 30 million antivirals. 

6.1 million total antivirals available is an estimate of the most likely antiviral scenario. 

The actual total number of antivirals available is not released to the public. Finally, the 2 

million total antivirals scenario creates a limited antiviral scenario. 

a. 14 Million 

TAVRS recommends a very similar time-phased statewide antiviral release 

schedule after reducing the total antivirals available to 14 million. TAVRS optimizes the 

release of antivirals for a maximum number of 26,551 lives saved, the same optimized 

lives saved if 30 million antivirals were available. All 14 million antivirals are released 

over roughly a 25-week period. The largest single release of antivirals occurs during 

week 7 and similarly precedes the rise in treatable persons. The cases treated, courses 

wasted and infected without antivirals have similar trends to the base case as well. As 

expected, it appears TAVRS needs only 14 million antivirals to accomplish the same 

release schedule as the base case. 

b. 6.1 Million 

Restricting the total number of antivirals available to 6.1 million forces TAVRS 

to adjust the time phased antiviral release schedule, shown in Figure 23. TAVRS 

optimizes the antiviral release schedule for a maximum of 15,705 lives saved. The 

antivirals are released only after a significant increase in the number of infected without 

antivirals. The number of infected without antivirals begins to increase at week 5, after 

which, at week seven, TAVRS recommends a stark increase in the number of antivirals 

released. The number of infected without antivirals, the purple line, peaks at a little over 

one million during the 10-week mark, as the number of antivirals released quickly 

increases. The antivirals released peaks at 11 weeks distributing over 2.2 million at once. 

This point marks a rise in the number of cases treated with antivirals and a decrease in the 

number of infected without antivirals.  
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The chart from Figure 24 shows the cumulative values of the curves from the 

chart in Figure 23. The number of cases treated is slightly less than the number of 

infected without antivirals, which in turn, is slightly less than the number of antivirals 

released. The geographic distribution of the release schedule (not shown) show that 

TAVRS delays releasing antivirals to the large population centers in the random origin 

scenario. San Antonio, Dallas, and Fort Worth are not released antivirals until week 11 

and Houston does not receive antivirals until week 13. In a reduced antiviral situation 

TAVRS delays the release of antivirals. Limiting the number of antivirals available to 6.1 

million highlights the necessity of a very specific release schedule. 

 
Figure 23.  Time phased statewide antiviral release schedule in response to a 

1918-like random-origin pandemic with 6.1 million antivirals available 
maximizing lives saved (after TAVRS, 2015). 
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Figure 24.  Time phased cumulative statewide antiviral release schedule in 

response to a 1918-like random-origin pandemic with 6.1 million 
antivirals available maximizing lives saved (after TAVRS, 2015). 

c. 2 Million 

The further reduction of the total antivirals available in TAVRS to two million 

creates the time phased antiviral release schedule shown in Figure 25. TAVRS optimizes 

the release schedule for a maximum of 5,364 lives saved. The number of cases treated 

never exceeds the number of infected without antivirals throughout the course of the 

pandemic. TAVRS recommends the release in the small number of antivirals during 

week 11, only after a large increase in the number of infected without antivirals, which 

eventually peaks during week 10 at 1.4 million. The large population centers in Texas are 

never released antivirals. When antivirals are extremely limited, TAVRS recommends 

delaying their release even later and does not recommend distributing to the counties with 

the largest populations. 
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Figure 25.  Time phased statewide antiviral release schedule in response to a 

1918-like random-origin pandemic with 2 million antivirals available 
maximizing lives saved (after TAVRS, 2015). 

4. Objective Variation 

The final TAVRS input parameter to be varied is the objective function. The base 

case uses the maximization of the number of lives saved to create an optimal antiviral 

release schedule. In this section, the other two objective functions are examined: the 

minimization of hospitalizations and the maximization of QALYs. A TAVRS antiviral 

release schedule with the objective function changed to maximize the number of 

hospitalizations avoided does not appear to drastically change the release schedule. The 

largest single release of almost 4 million antivirals occurs immediately before the steep 

rise in treatable individuals during week 7. The number of hospitalizations avoided is 

determined to be a maximum of 1,130. This could lead to a significant savings for 

hospitals. After adjusting the optimization function to maximize QALYs, the TAVRS 

optimized antiviral release schedule appears to have no significant change in when and 

where it released antivirals. This could be a product of having a relatively consistent age 

distribution across each county. 

 67 



C. SIMULATION COMPARISON 

To further evaluate the effectiveness of TAVRS, we use the optimized antiviral 

release schedule in a completely different model. We implement the TAVRS optimized 

antiviral schedule in the Texas Pandemic Flu Simulator (TPFS) in order to compare our 

expected total lives saved from TAVRS to the total lives saved in the TPFS. We evaluate 

six different pandemic scenarios that vary two pandemic strains with three geographic 

origins. We also compare the effectiveness of a simpler population-proportionate 

antiviral release schedule against the TAVRS optimized antiviral release schedule with 

the same scenarios in TPFS. Through this test, we determine if TAVRS performs as well 

as it advertises and how well it performs compared to another antiviral release schedule. 

The TPFS and TAVRS are different models with expressly separate purposes. 

TAVRS incorporates the optimization program formulated in Chapter III to release 

antivirals that maximize a specific benefit. It optimizes only a single intervention, 

antivirals, and only produces an antiviral release schedule. We can only examine the lives 

saved metric because the TPFS outputs the total number of deceased but not the number 

of hospitalizations and number of QALYs.  

TPFS is a disease-spread model, as mentioned in Chapter II, designed to simulate 

the progression of an influenza pandemic. It incorporates many different pandemic and 

intervention inputs and provides an extensive number of output parameters through a 

mass action compartmental model. The TPFS was originally used in this thesis to 

simulate pandemics in Texas without any antiviral intervention in order to create the geo-

temporal layered average treatable persons data for use in our optimization model. In this 

section, we use TPFS to find the total lives saved by comparing the number of deceased 

individuals throughout a pandemic with antiviral release schedules to the number of 

deceased individuals without incorporating antiviral releases. There is no guarantee that 

the number of expected lives saved in TAVRS is remotely near the comparison of 

deceased individuals in TPFS because the models are completely different. 

We assemble six scenarios in the TPFS, shown in Table 10. Scenarios one 

through three simulate the 2009-like Swine flu originating from the three geographic 
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origin options. Scenarios four through six do the same for the 1918-like Spanish flu 

pandemic. Each scenario initiates the pandemic in five counties that depend on the 

geographic origin. In the truly random geographic origin, the pandemic originates in three 

rural counties spread throughout the state (Tom Green, Bowie, and Potter) as well as two 

populated counties (Harris and El Paso). In the Border origin scenario, the pandemic 

originates in five boarder counties, including one heavily populated county: El Paso. In 

the population-weighted origin, all five counties are heavily populated counties in Texas.  

Table 10.   Scenarios for the TPFS lives-saved comparison. 

 
 

Each scenario in Table 10 compares the average total deaths throughout the 

pandemic without antivirals released to the average total deaths with two different 

antiviral release schedules: a population weighted population distribution of antivirals 

and the TAVRS optimized antiviral release schedule. The average total deaths for each 

antiviral release schedule in each scenario were calculated through three runs in the TPFS 

for a total of 54 simulation runs. The TPFS does not provide for command line access 

therefore all inputs must be made in the GUI limiting the speed and efficiency of multiple 

runs. This produces a low sample size that limits our conclusions. The population 

weighted release schedule provides all of antivirals to each county, proportioned by 

population, during the initial week of the pandemic. Each schedule simulates the release 

of 6,100,000 antivirals. This analysis will produce the average number of lives saved 

using antivirals released with the two different schedules. 
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1. 2009-Like Influenza Pandemic Mortality Comparison 

The results for a 2009-like pandemic reveal some surprises. Without antivirals, 

the average number of people to die from a 2009-like pandemic influenza is 3,150 

people. Columns one and two in Table 11 show the average lives saved with the 

population-proportionate antiviral schedule and with the TAVRS optimized release 

schedule, respectively, after three runs each. The population proportionate schedule 

outperforms the TAVRS schedule in two of the three scenarios; however, no scenario 

yields a statistically superior release schedule. Even in the 2009-random origin scenario, 

which saves approximately 270 more lives, the difference between the two release 

schedules’ lives saved is not statistically significant on the 90 percent confidence level, as 

shown by the bracketed confidence intervals in Table 11. This is due to the small sample 

size of simulation runs. Efficiently running many simulations is included in the follow on 

work discussed in Chapter V. Note that antivirals saved less than 10 percent of the total 

deaths in all situations. Recall from Chapter I that the purpose of antivirals is to provide 

immediate intervention along with social distancing until a vaccine can be produced. 

Antivirals are just one tool in an intervention strategy.  

 The third column of Table 11 contains the optimal lives saved in each scenario 

according to the optimization program in TAVRS. Even though TAVRS and TFPS are 

separate models, if our optimization model adequately reflects the dynamics, then we 

expect columns 2 and 3 to be similar. TAVRS maximizes the lives saved in each 2009-

like influenza pandemic scenario to be roughly 200, which falls into the 90 percent 

confidence interval on the TAVRS release schedule TPFS results. While the average 

TPFS lives saved with the TAVRS antiviral release schedule approaches the TAVRS 

maximized lives saved in each scenario, the population-proportional release schedule 

average lives saved actually outperforms it in the random scenario. This may be due to 

inherent fundamental differences in each model. Also, the 2009-like strain of influenza is 

mild enough where the majority of people needing (and not needing) antivirals have 

access to them. The population-proportionate release of antivirals evenly distributes 

antivirals that inadvertently provide more effective treatments in addition to more 

ineffective treatments, saving more than the TAVRS “optimal” lives. 
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Table 11.   Lives-saved comparison for 2009-like influenza pandemic. 

 
 

2. 1918-Like Influenza Pandemic Mortality Comparison 

The 1918-like pandemic, a much more severe influenza than the 2009 strain, 

yields a much different comparison. To put the lifesavings in perspective, without 

antivirals the 1918-like average death toll is approximately 270,000, roughly 90 times 

greater than the average death toll from the 2009-like pandemic. Table 12 shows that a 

TAVRS optimized antiviral release schedule consistently outperforms the population 

proportionate distribution of antivirals. The difference between the lives saved by the 

TAVRS release schedule and the population proportionate release schedule is statistically 

significant on the 90 percent confidence level, as shown by the confidence intervals in 

columns one and two. The TPFS results show the TAVRS optimized antiviral release 

schedules save on average over three to four times as many lives as the population 

proportionate distribution of antivirals in each scenario. That means over 10,000 more 

lives are saved on average with the TAVRS optimized antiviral release schedule. In the 

presence of a severe strain of influenza, the value of every antiviral is important; 

therefore, the release schedule must be exceptionally precise in targeting the treatable 

population. 

In column 3, the TAVRS optimization program advertises a maximum lives saved 

of between fifteen thousand five hundred and sixteen thousand depending upon which 

geographic region the pandemic begins. The TAVRS antiviral release schedule’s 

performance in the TPFS comes close to saving as many lives on average as the expected 

lives saved from the TAVRS optimization program, approximately 1,000 to 1,500 less in 

each scenario. The TAVRS maximized lives saved is within the 90 percent confidence 

interval from the TPFS average lives saved using the TAVRS antiviral release schedule 
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in two of the three scenarios, and outside of the confidence interval on the third by just 

300 lives. The performance of the TAVRS release schedule in the TPFS matches the 

TAVRS predicted lives saved very well.  

Table 12.   Lives-saved comparison for a 1918-like influenza pandemic. 

 
 

The 2009-like influenza pandemic was much milder than the 1918-like pandemic. 

When antivirals are not in limited supply, a simple population proportionate distribution 

works as well as the TAVRS optimized release schedule. However, in the presence of a 

severe pandemic, the population proportionate distribution greatly limits the effectiveness 

of the antivirals. In response to a severe pandemic, it is important to optimize the limited 

supplies until vaccines are produced. A TAVRS optimized release schedule will save a 

significantly greater number of lives during a severe pandemic. 
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V. CONCLUSION 

We have developed an optimization program that is implemented in TAVRS to 

provide the optimal antiviral release schedule to decision makers. Specifically, our 

optimization program creates a geo-temporal antiviral release schedule to maximize the 

antiviral benefit to the population of Texas. Possible benefits include lives saved, 

hospitalizations avoided, and QALYs saved. The program incorporates three different 

dimensions: time, location, and age-demographic groups known as population groups. 

The population groups include 20 categories that combine 5 age groups (0-4, 5–24, 25–

49,50-65, and 56+) with four demographic groups (low-risk, high-risk, first responders, 

and pregnant women) well as a category for the worried-well, a group with individuals 

that think they are infected with influenza but in fact are not. 

The optimization program includes three different data inputs: treatable persons, 

antiviral benefit, and antivirals available. Treatable persons, individuals that are 

symptomatic for less than 48 hours, are a product of the Texas Pandemic Flu Simulator. 

The optimization program targets a treatable population with the geo-temporal release of 

antivirals. In order to implement the optimization program in TAVRS, we averaged a set 

of treatable persons for geographic origins of influenza as well as specific historical 

strains of pandemic influenza. For example, using our optimization program in TAVRS 

decision makers can determine the optimal antiviral release schedule for a border-origin, 

2009-like influenza strain. 

We formulate a mixed integer linear program to optimize the antiviral release 

schedule. The model assumes that the spread of the influenza is independent of the 

antiviral release. Any antivirals received by the worried-well will have a negative impact 

on the benefit of the antiviral release. Also, all individuals in a population group will 

have the same benefit if they receive antivirals. 

We first consider a base case scenario, which consists of a 1918-like random-

origin influenza pandemic with unlimited antivirals. The release schedule maximized the 

lives saved to roughly 26,500 by releasing a large amount immediately before the rise in 
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treatable people. Although 30 million antivirals are available, TAVRS releases only 14 

million. Antivirals are released to the highest populated counties during the weeks that 

precede the fast rise in treatable population. Antivirals released earlier may be consumed 

by the worried-well and antivirals released later are not available for the rise in treatable 

people. 

 We next examined several variants from the base model. When the pandemic 

originates near the border, the optimal schedule releases antivirals to the counties 

immediately prior to when the disease significantly spreads to them. When the pandemic 

originates in a highly populated county, the pandemic can spread quickly. A less virulent 

pandemic strain generates an extended release schedule duration and fewer antivirals 

released. A smaller supply of antivirals results in a delay in the release of the bulk of the 

antivirals. Finally, the specific objective function (lives saves, hospitalization, QALYs) 

had no apparent impact of the release schedule of antivirals. 

Our analysis concludes with a comparison of the lives saved between the TAVRS 

antiviral release schedules and a simpler population-proportionate population 

distribution. The comparison found that in response to a mild pandemic, like the 2009 

swine flu, the population-proportionate antiviral release schedule worked comparably the 

TAVRS antiviral release schedule. However, in response to a severe strain of influenza, 

like the 1918 Spanish flu, the TAVRS antiviral release schedule performed drastically 

better saving roughly 10,000 more lives, three to four times greater, than the population-

proportionate release schedule.  

 There is much room for follow-on work. The optimization model can be 

improved by creating a truly stochastic optimization program. Our model uses the 

average of a set of stochastically created treatable person data. A truly stochastic program 

would use many treatable persons runs to robustly optimize the release of antivirals. 

Also, the Texas pandemic Flu Simulator’s could bypass the guided user interface (GUI) 

to input parameters and release schedules that run many scenarios efficiently. Currently, 

the parameters into the TPFS are only input manually. One could input parameters 

through command line prompts for more statistically relevant analysis of the TAVRS 

antiviral release schedules. Finally, the optimization program could incorporate the 
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coordination of several pandemic interventions working together. While the optimization 

of antivirals is important, it loses the bigger picture. Decision makers have to optimize 

several tools in order to determine the best intervention strategy. A holistic optimization 

would include the current policy of releasing antivirals and implementing social 

distancing until vaccines are developed and distributed. The interactions of several 

interventions are complicated but this would reflect a more realistic strategy from the 

state of Texas. 
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APPENDIX.  TAVRS-GUIDED TUTORIAL 

In this chapter, a TAVRS tutorial shows a step-by-step process to create and 

analyze an antiviral release schedule. The model is created for a 2009-like influenza 

epidemic that originates from the population centers in Texas and seeks to minimize 

deaths by distributing antivirals. The model is known as “2009-pop-MinDeaths.” 

First log on with a username and password to the Texas Pandemic Flu Toolkit at 

http://flu.tacc.utexas.edu. Click on “Texas Antiviral Release Scheduling.” From there 

three options present themselves on upper right side of the main page: “New Model,” 

“Current Model,” “Archive.” Select “New Model.”  

The first step is to name the model. In this case the name of the model represents 

the scenario that is modeled. In the text box write “2009-Pop-MinDeaths.”  

 
 

The next step is to select the epidemic type. This determines the basic 

reproduction number and the case fatality rate. The decision maker can select from just 

one epidemic type to up to all 5 scenarios. If the characteristics of the epidemic are well 

known, one may choose to select just a single one. If little information is known about the 

epidemic it may be more prudent to select all five epidemic types. In this case select 

“2009-like pandemic.” 
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Scrolling down, the next step is selecting the introduction scenarios. This pertains 

to the geographic location of the initial cases of the pandemic. One can choose between 

“Random,” “Random (population weighted),” and “Random from Mexican border 

counties (weighted by migrating population).” Choose “Random (population weighted).” 

Between the geographic conditions and the epidemic type, TAVRS will select the 

corresponding progression scenarios in the background. For our case it will use 150 

progression scenarios. 
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If one has a particular set of disease parameters and initial location, a unique 

scenario can be uploaded. The output from the Texas Pandemic Flu Simulator provides a 

set of treatable files that TAVRS will use to optimize the time phased antiviral release 

schedule. In this case do not upload scenarios. 

 
 

The next option is to determine the time scale to be used for antiviral distribution. 

TAVRS will use this selection to set the time period at a constant length. The dropdown 

menu allows the user to select either weekly, biweekly, or monthly. Select the weekly 

option for our scenario. 
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The next step is very important. TAVRS objective is selected from a dropdown 

menu. The choices the decision maker has are “minimize deaths,” “minimize 

hospitalizations,” and “maximize life years saved.” Select “minimize deaths” for this 

scenario. 

 
 

TAVRS also allows the user to select the health service region (HSR) in which he 

wants to investigate. The user may select from one HSR to all of them. TAVRS is run on 

the whole state of Texas still, but just the HSR of interest is reported. 
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The decision maker also selects the current number of cases statewide throughout 

Texas. Most often the decision make is modeling the epidemic after the statewide cases 

has hit a certain threshold. This is usually on a larger order of magnitude. The option still 

exists for the user to select a small number of cases and determine the release schedule of 

antivirals from there. 

 
 

The counties selection allows the decision maker to further narrow the release 

schedule that is displayed on the screen.  
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Finally, the decision maker inputs the number of antivirals available and at what 

time they become available. This input will most likely include an initial stockpile of 

antivirals as well as additional amounts provided by the CDC’s SNS. It is important to 

remember what units the time periods are in because that will determine how many time 

periods the user will input.  
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Following this last step, the online window will change to the “Archive” tab. The 

scenario that was just created is assigned a job number and the text below it will keep the 

user posted of the progress. In around 5–10 minutes a TAVRS will produce a antiviral 

release schedule tailored to the scenario just created. 
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